

How can we assess genetic resilience in our sheep flocks?

Ann McLaren

Ann.McLaren@sruc.ac.uk Sheep Breeder's Round Table - 2019

Leading the way in Agriculture and Rural Research, Education and Consulting

Resilience

• "...the capacity of the animal to be minimally affected by disturbances/challenges or to rapidly return to the state pertained before exposure to a disturbance"

Berghof et al. 2019

- Relevance to sheep (resilience & sustainability)
 - Variable weather conditions
 - Longevity
 - Disease
 - Different environments

— ...

SRUC's Scottish Blackface flocks

- Background
- Castlelaw Farm & Kirkton Farm
- Hill sheep breeding project (1999 2011)

SRUC Hill Sheep Index – Scottish Blackface Breeding goal traits

Ewe Traits

mature size
longevity
lambs lost
lambs reared
maternal wean weight
fleece weight

Lamb Traits

weaning weight
carcass fat class
carcass conformation
carcass weight

Early work – Scottish Blackface flocks

- Genotype x Environment interactions
 - Assessed by estimating genetic correlations between farms (environments)
 - Low genetic correlation = GxE
- Between 1997 2010
 - 30 rams with offspring on both farms
- Little GxE observed
 - GxE seen for lamb birth weight & ewe pre-mating weight
 - Little GxE seen for other traits possibly due to
 - Common sires used resilient across both environments?
 - Farm management too similar?
 - More data required?

Early work – Terminal Sire flocks

- Different definitions of environments investigated
 - Clustering similar farm types
- Data from 79 terminal sire flocks
 - 40 Texel, 21 Charollais and 18 Suffolk
- Traits investigated
 - 21 week old weight
 - Ultrasound fat and muscle depths

- Correlations between cluster 1 and 2 all significantly below 1 = GxE
- Evidence of sires re-ranking

Early work – Terminal Sire flocks

- Different definitions of environments investigated
 - Environmental scales
- Data from 40 Texel flocks
 - Scale based on performance and climate
 - Scaling and re-ranking of sires observed
 - Genetic correlations higher the more similar the farm environment
- Overall evidence of GxE but difficult to identify suitable definitions of environment
 - (Flocks –v- Clusters –v- Scales)

SRUC's Scottish Blackface flocks

- Background
- Castlelaw Farm & Kirkton Farm
- Hill sheep breeding project (1999 2011)

- From 2012
- Castlelaw Genetic resilience relating to worms
- Kirkton Genetic/breed resilience relating to different management systems.

Disease traits (2012 -)

 SRUC's Scottish Blackface flock – Castlelaw Farm

Objectives

- Estimate genetic parameters of disease traits
 - Faecal Egg Counts (FEC), DAG scores, Immunological traits
- Assess relationship with productivity (e.g. live weight)
- Assess genetic relationship between disease traits and immune function

Methodology

Antonio.Pacheco@sruc.ac.uk

Data collected from 3,951 lambs

- Lambs faecal sampled at approximately 3 months of age
- Live weight and DAG score recorded at the time of faecal sampling
- DAG score = standard method of measurement used in many countries

Traits				
FEC _S	FEC Strongyles			
FEC _N	FEC Nematodirus			
FEC _c	FEC Coccidia			
LWT	Live weight			
DAG	Faecal soiling (Dag) score			

5 point dag score

0 1 2 3 4

Heritabilities

Antonio.Pacheco@sruc.ac.uk

Trait	FECs	FEC _N	FEC _c	LWT	DAG
FEC _S	0.14 (0.03)				
FEC _N		0.17 (0.03)			
FEC _C			0.09 (0.03)		
LWT				0.33 (0.05)	
DAG					0.09 (0.03)

Genetic correlations

Antonio.Pacheco@sruc.ac.uk

Trait	FECs	FEC _N	FEC _c	LWT	DAG
FEC _s	0.14 (0.03)	0.74 (0.09)	0.39 (0.15)	-0.01 (0.13)	0.08 (0.18)
FEC _N		0.17 (0.03)	0.23 (0.16)	-0.08 (0.12)	0.02 (0.18)
FEC _c			0.09 (0.03)	0.25 (0.15)	0.03 (0.21)
LWT				0.33 (0.05)	-0.33 (0.15)
DAG					0.09 (0.03)

- FEC_s and FEC_N highly linked genetically
 - (FEC_s and FEC_c also linked, but to a lesser extent)
- No significant relationship between any FEC traits and LWT or DAG
- Negative relationship between LWT and DAG LWT reduced the higher the DAG score (i.e. dirtier)

Genetic line for reducing FEC (2012 -)

Joanne.Conington@sruc.ac.uk

- Selection high EBV Blackface
- Control average EBV Blackface
- Faecal high EBV plus FEC Blackface

SRUC Hill Sheep Index – Scottish Blackface Breeding goal traits

Ewe Traits

mature size
longevity
lambs lost
lambs reared
maternal wean weight
fleece weight

Lamb Traits

weaning weight
carcass fat class
carcass conformation
carcass weight
FEC

FEC conclusions

- Selection for reduced FEC is working
- Genetic correlations between different parasites are favourable
 - meaning that genetic selection for low FECs is possible, and will not affect productivity.
- Selection for FECs also confers some resistance to others (e.g. Coccidia)
- Some links have been seen in terms of immunological traits

Scottish Blackface –vs- Lleyn

- Background
- SRUC Kirkton Farm
- Hill sheep breeding project (1999 2011)

SRUC Hill Sheep Index – Scottish Blackface Breeding goal traits

Ewe Traits

mature size
longevity
lambs lost
lambs reared
maternal wean weight
fleece weight

Lamb Traits

weaning weight carcass fat class carcass conformation carcass weight

Alternative/additional breeds?

- Lleyn sheep
 - Introduced at Hill & Mountain
 Research Centre in 2006
 - Managed alongside Kirkton
 Blackface ewes since 2013

- Comparison = 3 Lines (2012)
 - Selection high EBV Blackface
 - Control average EBV Blackface
 - Lleyn selected on EBV

Signet Indexes – Hill2 & Lleyn

- From 2012 Moved to selecting animals according to Signet indexes
- Also considered different management systems.
- Most recent comparison:
 - "Hill -v- Park"
 - Based on amount of time spent grazing on different quality grazing types

Hill –vs- Park Management Systems

- From 2016
- Three lines split across two different management systems.

	Selection	Control	Lleyn
Hill	100	100	100
Park	100	100	100

KEY
proportion
of ewes
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
8.0
0.9
1

Hill –vs- Park Management Systems - Ewes

SRUC

Nicola.Lambe@sruc.ac.uk

- Litter size
 - No significant line x system interaction
- Litter weight weaned
 - Significant line x system interaction
 - Hill no line differences
 - Park Lleyns > Selection > Control
- HILL v PARK
 - Control = no difference
 - Selection = Park > Hill
 - Lleyn = Park > Hill

Hill –vs- Park Management Systems - Ewes

2018

- But...
 - Extreme weather e.g.
 "Beast from the East"
 - Too much for the Lleyns?

	PARK		HILL	
	SBF	Lleyn	SBF	Lleyn
Scanning %	134	114	129	96
Lambing % (born dead or alive)	131	101	122	90
Lambing % (born alive)	126	98	115	85
Marking %	113	86	103	63
Ewes aborted (% of ewes scanned in lamb)	7	18	11	9
Lambs born dead (% of all born)	4	3	4	6
Lambs lost from scanning to marking %	16	25	20	34
Lambs lost from birth to marking %	12	14	12	35

N.B. Average scan % in 2016 and 2017 = 131% in SBF; 136% Lleyn

Hill –vs- Park Management Systems - Lambs

- Lamb growth
 - Roughly equal number from
 - Hill & Park
 - Selection, Control and Lleyn

	Average age (d)	Total no. records
birth	0	1228
marking	54	1088
clipping	82	1052
weaning	111	1062
post-wean	139	1035

	PARK System			HILL System			
	Hill	Rough Fields	Flat Fields	Hill	Rough Fields	Flat Fields	
lambing		Singles and twins			Singles and twins		
post-Lamb – marking		Singles and twins		Singles	Twins		
marking –	Single	Single males and		Singles			
weaning	females	twins		& twins			
post-wean: ewe lambs		All			All		
post-wean: tup lambs	Grazing flat fields with hoppers - slaughter			Finish	ed in shed - s	laughter	

Averaged across systems (2016 & 2017)

Holly Smith, BSc Hons dissertation, 2019

- Birth & marking
 - Lleyn >Selection >Control
- Shearing to postwean
 - Lleyn &Selection >Control

Line x System – PARK (2016 & 2017)

Holly Smith, BSc Hons dissertation, 2019

- Birth to weaning
 - Lleyn > Selection > Control
- Postwean
 - Lleyn &Selection >Control

(grass + concentrates)

Line x System – HILL (2016 & 2017)

Holly Smith, BSc Hons dissertation, 2019

- Birth to shearing
 - Lleyn & SelectionControl
- Weaning
 - Selection > Lleyn& Control
- Postwean
 - Lleyn & SelectionControl

(3 concentrates in shed)

Systems conclusions

- Breed improvement has increased performance of Scottish blackface hill sheep
- Breed substitution using Lleyn sheep could match or increase performance
- Benefits may depend on hill system and climate
 - Lleyns successful until pushed too far?
- Further work to look at reasons for differences
 - Feed intake, grazing behaviour, colostrum quality, welfare assessments, lamb mortality...
 - Genetic influences

Acknowledgements

- Commercial farmers involved in data collection
- All SRUC technical and farm staff involved in data collection

