



# **Breeding better health into Texels**

#### Joanne Conington

**Ann McLaren**, Karolina Kaseja, Sebastian Mucha, S.Desire, Neil Clelland, Nicola Lambe, John Yates, Ed Smith ++

SRUC Research

iTexel conference 17 November 2018

Leading the way in Agriculture and Rural Research, Education and Consulting

#### Why worry about health traits?

- 'Narrow' selection for 'production only' traits in other species has led to
  - Deterioration in health & fitness of > 100 different traits
- Elite breeding flocks
  - Offspring used on commercial farms
- Genomics offers faster-track solution
  - Health traits are hard to measure

ALSO.....

# We spend a lot of time 'Managing' the problems of disease









#### What kind of life?



#### This??



### Or this??









#### Farm visit timings



- 2015 & 2016 data recorded at:
  - Mid-lactation: Average days in milk = 38 days
  - Late-lactation: Average days in milk = 113 days
- 2017 & 2018 data recorded at:
  - 8-week weight: Average days in milk = 62 days

#### Number of records



|       | ves   | No. ev | Year  |   |
|-------|-------|--------|-------|---|
| 000   | > 10, | 3,339  | 2015* | - |
| rds   | reco  | 3,482  | 2016* | 4 |
|       |       | 1,712  | 2017  | 2 |
| 764   | 8,7   | 1,652  | 2018  | - |
| types | geno  |        |       |   |

\*ewes scored twice @ 38 & 11

# Milk sampling & nasal swab









# Mastitis 'phenotyping'







#### **Somatic Cell Count vs CMT?**



# Good predictor ✓





Score 0 (healthy)

Score 4 (serious mastitis infection)



Same (ish) genes

| Trait | Heritability |
|-------|--------------|
| CMT   | 0.14 (0.08)  |
| SCC   | 0.23 (0.08)  |

#### **CMT scores - summary**





### **CMT scores - summary**





#### More mastitis = lower lamb weight





## Looking for major genes



Region of interest identified on Chromosome 23





OAR23\_2961089 OAR23\_3237800

- 2,995 genotypes
- 422,532 SNPs



### Foot scoring method



1: Non-specific inflammation of the interdigital skin





2: Necrotic, severe inflammation



Severe inflammation



### Foot scoring method



 3: Under-run of the sole, restricted to soft horn of the heel



Loose wall

 4: Under-run of the sole of the foot including the hard horn of the toe and wall

Under-run horn





#### **Foot scores**







- At least one foot scored 1 or above
- All feet scored 0

**Scoring event** 

# Resistance to Footrot is under low to moderate genetic control



## Heritability 0.18

#### **Breeding resistance to footrot**

 Foot scoring useful tool to differentiate footrot & other

•5-point scale, h<sup>2</sup> ~0.2

hoof lesions





Conington et al., 2008 *Vet Res Comm*. Nieuwhof et al., 2008 *Animal* 



#### **Footrot GEBV**



Correlation between GEBV and phenotype 0.98



#### Value of using genomic selection



Example of SNP OAR2\_198741802.1

#### Main messages



Health traits

High prevalence



Heritable

£6.60



#### Acknowledgements





SMAll RuminanTs breeding for Efficiency and Resilience



# **Phenotype Farmers**

– you know who you are!