

OSIRIS, a bio-economic model, that allows to define economic breeding goald for ruminants

SMARTER Summer school

30 March 2023

Stéphanie Coppin – Idele

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 772787

- Why do we need a bio-economic model?
- OSIRIS : A bio-economic model to design new selection objectives
- Application to a system in milk sheep
- Inclusion of a new trait in osiris : The example of labour

Agenda

Why do we need a bio-economic model?

- OSIRIS : A bio-economic model to design new selection objectives
- Application to a dairy sheep system
- Inclusion of a new trait in OSIRIS : The example of labour

Breeding objectives

How to rank traits?

Farm systems

A need for economic studies, based on field data

Four reasons for the OSIRIS Project

The OSIRIS Project

- Project over 3 years (2012-2014)
 - In dairy & meat sheep, dairy & meat cow and dairy goat

Process to determine breeding objectives and TMI

Agenda

Why do we need a bio-economic model?

• OSIRIS : A bio-economic model to design new selection objectives

Application to a dairy sheep system

Inclusion of a new trait in OSIRIS : The example of labour

Process to determine breeding objectives and TMI

Modelization of the Profit function

The herd profit (P) is expressed as the sum over all animals of the difference between all the k income (R_{yk}) and m expenses (C_{ym}) for a given ewe of parity y (y = 1 for a primiparous ewe and y = 2 for a multiparous ewe).

$$P = N_1 \left(\sum_{k} R_{1k} - \sum_{m} C_{1m} \right) + (N - N_1) \left(\sum_{k} R_{2k} - \sum_{m} C_{2m} \right)$$

For each production system, we derive the economic value a_x for trait Y_x as the direct marginal profit, i.e. the derivative of the profit function P(Y₁...Y_n) with respect to the trait Y_x, at the point of mean performance Y_{i0} for the n traits as follows

$$a_{x} = \left[\frac{\partial P(Y_{1} \dots Y_{n})}{\partial Y_{x}}\right]_{Y_{10} \dots Y_{n0}}$$

The analytical derivatives were verified by testing the effects of small changes in traits on profit (finite differences).

Linking the costs and revenues to traits

Example with ewe fertility : + 1 %

Global architecture

- Common modules for all ruminants species and specific modules
- Developed in SAS-IML

Traits already considered in OSIRIS

Various information sources

Agenda

• Why do we need a bio-economic model?

OSIRIS : A bio-economic model to design new selection objectives

Application to a dairy sheep system

Inclusion of a new trait in OSIRIS : The example of labour

Study case ROQ01

- Mountain area favorable to grass growth in spring
- → Forage system 100% grass (110d in shed)
 - Ventilated alfalfa & dactyl hay, + ray grass hay and et natural grassland dried on the ground
 - Concentrate feed : barley (self-produced) + meal

Organisation of the study case

Average longevity : 3,98 years

Modelisation of the study case

- Incomes : 128 000 € (study case : 124 000 €)
 - Cullings : 4 %
 - Lambs sales : 19 %
 - Milk : 77 %
- Costs: 34 000 € (study case : 29 000 €)
 - Feeding (≈ 900 kg MS / ewe / year): 64 %
 - 522 kg MS of dry forrage
 - 171 kg of barley
 - 21 kg of meal
 - 204 kg MS of grazed grass
 - Others (health, repro, breeding costs) : 36 %

→ Benefit : 94 000 € (study case : 95 000 €)

= 255 € / ewe put for reproduction (study case : 256 € / ewe)

Economic impacts of selection traits

- Longevity : +1% of replacement rate
 - \nearrow cullings \rightarrow cullings incomes \nearrow et longevity \searrow
 - \nearrow replacement rate \rightarrow lambs sales \lor et feeding costs of lambs \nearrow
 - 7 % of young females \rightarrow \searrow milk incomes
 - → \searrow benefit : -2€ per ewe put for reproduction / year
- Milk quantity: +0,01 kg / month of lactation
 - 7 milk incomes
 - A feeding costs
 - → Benefit similar to the basic modelisation

Economic impacts of selection traits

- FY : +0,01 kg / month of lactation
 - ¬ milk incomes
 - *¬* feeding costs
 - → \nearrow benefit : +6€ per ewe put for reproduction / year

PY : +0,01 kg / month of lactation

- ¬ milk incomes
- *¬* feeding costs
- \rightarrow 7 benefit : +6€ per ewe put for reproduction / year

Economic impacts of selection traits

- SCS : +0,01 point of SCS
 - slight ↘ of milk incomes

➔ Benefit similar to the basic modelisation

Mastitis : +1 % of mastitis

- ↘ milk incomes
- mastitis costs, health et breeding costs
- **7** of cullings for mastitis:
 - *¬* culling incomes
 - \> longevity
- **7** replacement rate to compensate cullings :
 - ↘ incomes for lambs sales
 - *¬* feeding costs of lambs

→ \searrow benefit : -3€ per ewe put for reproduction / year

Economic weights of traits

■ Represents the gain (in €) by improving the trait of 1 STDg

	()		
Caractère	Pondération économique		
Longevity	7,43€		
MY	-0,07 €		
FY	7,92€		
РҮ	4,40€		
SCS	1,25€		
Mastitis	15,91€		

(€ per genetic standard deviation)

Optimisation of the TMI's weightings

- Use of the economic weights and a dataset of indexes
- Random selection of weightings -> iteration until finding the one which will maximise the global profit
 - Monitoring of the selection responses (on selected traits and others)
 - Discussion with breedings associations
 - Definition of constraints to avoid the degradation of some traits

The evolution of ISOL (milk sheep TMI)

Agenda

- Why do we need a bio-economic model?
- OSIRIS : A bio-economic model to design new selection objectives
- Application to a dairy sheep system
- Inclusion of a new trait in OSIRIS : The example of labour

Inclusion of labour in breeding goals

Objective for SMARTER W7.3

Estimate the economics of labour use in new R&E traits

- We included labour costs for R&E traits chosen according to work done on previous WPs and WP7 tasks
- Labour is included not as a trait itself, but in the values of other traits
 - Literature about labour use in small ruminants systems
 - Description of the links between labour and the traits modelled in OSIRIS
 - Several hypotheses about the levels of labour use
 - Achieving a breeding goal including labour

Resilience and Efficiency traits

Links between R&E traits and labour

Example of the prolificacy

Example of the prolificacy

Time_diff_lambing et Time_medium_lambing 1h for difficult lambing / 10 min for medium lambing	Rate_diff_lambing et Rate_medium_lambing 1% of difficult lambing / 6% of medium lambing	Time_mngt 4h/d for all lambs	Nbr_days_mngt 30 days	Watch_time 22 hr per day
	Nbr_watch_days 6 days	Care_time 4 min per lamb	nbrMB 357 lambings	

Time_lambing = Time_diff_lambing x Rate_diff_lambing x nbrMB + Time_medium_lambing x Rate_medium_lambing x nbrMB

Time_prolificacy = Time_lambing + Watch_time x Nbr_watch_days x Nlambs + Time_mngt x Nbr_days_mngt + Care_time x Nlambs

- > Development and integration of the equations and labour-related data in OSIRIS
- Calculation of the benefit of the system and then the breeding objective

Smarter MAI Ruminan's breeding for Efficiency and Resilience

Main results

Main results

Evolution of labour time after increasing the herd prolificacy

Main results

Evolution of labour time after increasing **Resistance to**

Evolution of labour time after increasing feed efficiency

Main results

Evolution of labour time after increasing de la **resistance to subclinical mastitis**

Evolution of labour time after decreasing resistance to clinical mastitis

Main results

Economic weights with and without labour

Smarter MAII Ruminants breeding for Efficiency and Resilience

Resistance to clinical mastitis

When decreasing the rate of clinical mastitis in the herd, the treatments costs also decrease. The culling rate decrease and less youngs are kept. The labour costs decrease slightly.

Longévité

If the longevity of the herd

increase, the number of

young in the herd is reduced, so the costs related to their feeding and their health is

also reduced. The labour

requirement related to ewe

lambs rearing therefore

decrease and so the economic weight is important

Prolificacy

By increasing the number of lambs in the herd, the number of

lambs increase in the herd and

the sales revenues of lambs

increase slightly. But the labour requirements also increase.

Resistance to subclinical mastitis, feed efficiency

These traits were not included in the model. Here, they are considered by including labour in the model. So, the economic weights of these traits increase with the labour costs.

The final breeding objective

- Results in economic weights that include labour for a milk sheep breed
- The same assessment is ongoing for a meat sheep breed

38

Thanks for your attention

