

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

SMAll RuminanTs breeding for Efficiency and Resilience

Reaction norm models with observed covariates

Exploring the value of genomic prediction, reaction norms and phenotyping strategies

Masoud Ghaderi-Zefreh

Smarter summer-school March 2023

Animals performance and challenge

- Challenge: external stimuli provided by the environment that affects animal's phenotype (temperature, humidity, pathogen, quality of food)
- Animals' performance is affected by the level of exposed challenge (on average)
- Resilience: Stay productive under challenging condition
- Production = (Production potential) + (environmental challenge) * resilience

$$y = y_0 + y_1 \cdot t$$

Alternate definitions for resilience

- Plasticity : Resilient animals are non-plastic (don't respond to changes)
- Sensitivity: Resilient animals are non-sensitive
- Generalist: Resilient animals are generalist (in contrast with specialist who have high production potential but are not resilient)
- Robustness*
- Favourable: highly resilient animals <u>with</u> high production potential

Random-Regression Reaction-norm model

- Reaction norm: Phenotype affected by environment
- Random regression: dependency to covariate (continuous) is through a random effect
- Random-regression reaction-norm model: effect of environment as a continuous measure is random u: additive genetic

$$y = y_0 + y_1 \cdot t$$

u: additive genetic μ : population average

```
e: environmental deviation
```

 $y_{j} = \mu_{0} + \mu_{1}t + u_{0j} + u_{1j}t + e_{0j} + e_{1j}x$ Population mean
Genetic
deviation
Environmental
deviation
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

Realised performance

Resilience and production potential as separate traits

• Heritability of production potential
$$h_0^2 = \frac{\sigma_u^2}{\sigma_u^2}$$

• Heritability of resilience $h_1^2 = \frac{\sigma_{u_1}^2}{\sigma_{u_1}^2 + \sigma_{e_1}^2}$

 Heritability of performance at environment t (Kolmodin et al. 2004)

$$h_y^2(x) = \frac{\sigma_{u_0}^2 + t^2 \sigma_{u_1}^2 + 2t \sigma_{u_0 u_1}}{\sigma_{u_0}^2 + \sigma_{e_0}^2 + t^2 \left(\sigma_{u_1}^2 + \sigma_{e_1}^2\right) + 2t \left(\sigma_{u_0 u_1} + \sigma_{e_0 e_1}\right)}$$

Linear vs non-linear reaction norm

$$y = y_0 + y_1 \cdot t + y_2 \cdot t^2 + y_3 \cdot t^3 + \cdots$$

• Higher flexibility \rightarrow better fit

However,

- Many traits exhibit linear (or piecewise linear) trend [Sánchez-Molano 2019, 2020; Ramón et al 2021]
- Resilience can be easily inferred from linear traits (slope); what does y_3 refer to?
- More complex selection index in case of higher order

Measuring resilience and production potential using RR

Challenges:

- Suitability of Data structure
 - Size of phenotypic information (e.g., Number of measurement for individuals (e.g., carcass weight)
 - Distribution of related individuals across environments

 \geq Unknown environmental challenge (t) [afternoon]

 $y = P_0 + P_R \cdot t$

✓ Estimation may be poor. Hence, there is scope for genomic prediction

Effect of genomic and number of records on estimation - 1

With low number of records, AIREML may give zero estimate variance component

Effect of genomic and number of records on estimation -2

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

Possible distribution of families across environments

- Random: Each sire has offspring in different random environments (flock)
- Clustered: A sire has all of its offspring reared in the same flock
- Assortative: Same as clustered with negative correlation between sire TBV and challenge level of the herd: better sires live in better environment

Effect of distribution of families on estimation

- Clustered and assortative distribution have poorest estimation in terms of accuracy of EBV and precision of genetic variance <u>when pedigree information is</u> <u>used</u> (Calus et al 2004)
- This is because genetic connectedness is reduced between herds (Foully et al 1990)
- However, using genomic information we obtain a connectedness between unrelated individuals
- Can we avoid this issue with genomic?

Effect of distribution of families on estimates

- No!
- Genomic improve accuracy in general
- However, the detrimental effect of clustering remains for production potential
- This is not a problem for resilience GEBV

How do we use results from this model

- For instance (the numbers are invented)
 - assume that we increase milk yield by $\Delta G = 100$ liters in 20 years
 - correlated response in "slopes" is

•
$$\Delta G_{slope} = \Delta Gr_{g(0,1)} \frac{\sigma_{g(0)}}{\sigma_{g(1)}} = 100 * (-0.5) \frac{2}{20} = -2$$

- now we move to a country with +10 C
- Δ in yield: $\Delta G_0 + \Delta G_1 * 10 = 100 + (-2) * 10 = 80$
- we have lost 4 years of genetic improvement ⁽³⁾ and our animals are more sensitive

Selection with a model without RR

Conventional model without RR: Response to selection depends on the environment where phenotypes are collected [Falconer 1990]

Selection with a model without RR

Conventional model without RR: Response to selection depends on the environment where phenotypes are collected [Falconer 1990]

Selection with a model with RR

Comparison

Selection with a model with RR

Comparison

Using model without RR.

Low variability of environments:
 Selection for production may lead to loss of resilience – vice versa

• High variability of environment: Selection for production also increases resilience

Using model with RR

• Can improve both or based on an index

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

- 3300 individuals in 3 generations
- Id, sire, dam, farm, TBV
- 3 scenarios for challenge level from low, medium and high heterogeneity farm

> head(data)

	id	sire	dam	farm	x_lowHet	y_lowHet	x_midHet	y_midHet	x_higHet	y_higHet	tbv_r	tbv_0
1	1	0	0	4	0.56571469	10.229946	0.53642721	10.294395	0.4778523	10.423295	0.3010956	-0.0540811
2	2	0	0	8	0.91634493	5.128051	0.85521197	5.369157	0.7329461	5.851367	-0.1163798	-0.3482756
3	3	0	0	1	0.02677978	12.816753	0.05355957	12.754122	0.1071191	12.628859	-1.0049537	0.4142338
4	4	0	0	3	0.31620874	9.343520	0.31706821	9.340000	0.3187871	9.332961	0.1497635	0.3070735
5	5	0	0	3	0.36273375	10.959990	0.41011824	10.809085	0.5048872	10.507276	-0.0551632	0.1980272
6	6	0	0	9	0.92363147	7.151264	0.84820410	7.475782	0.6973493	8.124818	0.0173676	-0.0141196
>												

		>	head	l(d	F)		
DATAFILE			one	id	env	phen	n
phenotype_ex01.t	ext	1	1	1	0.56571469	10.229946	1
#1 23	4 5	2	1	2	0.91634493	5.128051	2
# mean id x_valı	ue phenotype number_of_records	3	1	3	0.02677978	12.816753	3
NUMBER_OF_TRAITS		4	1	4	0.31620874	9.343520	4
T NUMBER OF FFFC		5	1	5	0.36273375	10.959990	5
6		6	1	6	0.92363147	7.151264	6
OBSERVATION(S)		>					
4							
WEIGHT(S)							
EFFECTS: POSITIO	<pre>DNS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT N</pre>	IEST	ED]				
1 1 cross	# overall mean						
3 1 cov	# covariate X						
2 3300 cross	# random animal						
3 3300 cov 2	<pre># slope for individual</pre>						
5 3300 cross	# pseudo-residual						
3 3300 cov 5	<pre># covariate nested to pseudo-residual</pre>						

 $y_j = \mu_0 + \mu_1 t + u_{0_j} + u_{1_j} t + e_{0_j} + e_{1_j} x$

-	Accuracy of GEBV	Accuracy of EBV
resilice:	0.2132054	0.1730527
production potential:	0.3417898	0.259263

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

