

How much impact is genetics having on carcass quality and eating quality

12th September 2022, MII Meeting

Irish sheep breeding programme

Terminal

Replacement

Lambing

Difficulty & Survival

Growth

Days to slaughter

Meat

Carcass fat & conformation

Health

Lameness & dag score
AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Importance of lamb performance

Days to slaughter
Carcass conformation
Carcass fat

Importance of lamb performance

Objective

Update lamb performance module to include new carcass data

Carcass Data

- 15,714 lambs slaughtered
- 38 commercial flocks
- 8 factories

Carcass Information:

%	Е	U	R	0	Р
1	0	0	0.03	0.01	0.05
2	0.03	14.64	32.58	0.31	0.01
3	0.10	20.83	28.66	0.46	0.01
4	0	0.66	1.53	0.01	0
5	0	0	0.08	0	0

Carcass In Spec Trait

In Spec:

- Carcass weight (16 to 21 kg)
- Carcass conformation (E, U, R)

%	Е	U	R	O	Р
1	0	0	0.03	0.01	0.05
2	0.03	14.64	32.58	0.31	0.01
3	0.10	20.83	28.66	0.46	0.01
4	0	0.66	1.53	0.01	0
5	0	0	0.08	0	0

Carcass In Spec Trait

In Spec:

- Carcass weight (16 to 21 kg)
- Carcass conformation (E, U, R)
- Carcass fat (2 & 3)

%	Е	U	R	О	Р		
1	0	0	0.03	0.01	0.05		
In Spec for all 3 – 61%							
4	0	0.66	1.53	0.01	0		
5	0	0	0.08	0	0		

Carcass Data - genetics

1. Are the traits under genetic control?

Trait	Range	Average	Heritability
Carcass weight	15 to 26 kg	20.54 kg	0.14
Carcass conformation	E, U, R, O, P	R	0.19
Carcass fat	1 - 5	2.55	0.09
Days to slaughter	95 to 365	201.62	0.16
Kill out	25 to 55%	45.37%	0.22
In Spec	0/1	61.09%	0.08 (0.02)

Carcass Data - genetics

2. What's the relationship between carcass and lamb performance traits?

Days to slaughter

Days to Slaughter

Kill out

Environmental Impact

What is the impact of genetic selection on meat eating quality?

INZAC II

What's different:

- Evaluate new changes to indexes
 - Genomic Selection
 - Across breed
 - Health and carcass data
- Carcass data
 - subset of lambs from each group slaughtered
 - Focus on efficiency traits:
 - Greenhouse gases
 - Feed intake/ efficiency

reca intaker emolericy

IX (3U)

IX (3U)

IX (3U)

TX (30)

Sensory Methods

Objective

- Identifies and measures attributes of a product
- Assessed by selected / trained panel

Subjective

- Measures acceptance / preference of a product
- Assessed by representative consumers

Meat eating quality attributes

Initial tenderness: resistance of meat to molar teeth during first 3 chews 10 Not tender Very tender **Juiciness:** release of liquid from the meat (first 3-4 chews) 10 Not juicy Very juicy **Chewiness:** number of chews to break-down sample for swallowing Not chewy Very chewy Overall tenderness: initial tenderness & chewiness (before swallowing) 6 7 Very tender Not tender Lamb flavour: The intensity of lamb flavour perceived while chewing 1 2 3 7 10 **Not lamby** Very lamby

Slight None Moderate Severe

Connective tissue: volume of connective tissue in the sample

Results

	Initial			Overall	
	Tenderness	Juiciness	Chewiness	Tenderness	Lamb Flavour
Black *X	8.38 (0.48) ^a	8.23 (0.49) ^a	2.30 (0.48) ^a	7.82 (0.53) ^a	7.60 (0.49) ^a
Green AAAAAAAA	7.52 (0.24) ^{ab}	7.20 (0.25)b	2.82 (0.24) ^a	7.31 (0.27) ^a	6.58 (0.25)b
Red 🌞	7.13 (0.23)b	6.67 (0.21) ^c	3.16 (0.23)ab	6.83 (0.25) ^{ab}	6.20 (0.23)bc
Blue	7.05 (0.21) ^b	6.52 (0.23) ^c	3.41 (0.21) ^b	6.71 (0.23)b	6.06 (0.21) ^c

Conclusions

- Large amounts of carcass data included in indexes
- More accurate evaluations to carcass traits
 - Knock on environmental benefits
- Meat eating quality research underway
 - Preliminary results look very positive!

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

