

Breeding for reduced greenhouse gas emissions in sheep

Nóirín McHugh

Edel O' Connor, Eoin Dunne, Patrick McCarron & Fiona McGovern

UX Texel Breed Development Committee, 23rd May 2023

National GHG emissions

National agricultural emissions

- 37% national GHG emissions
- Dominated by cattle related emissions

National Average

Methane = 64% Mostly enteric fermentation

Nitrous oxide= 20% Fertiliser, grazing and manure

Carbon dioxide = 16% Concentrates and fossil fuels

Enteric Fermentation

Marginal Abatement Cost curve (MACC)

Two-pronged approach

Indirect approach

Direct approach

€uro-star genetic indexes

Why measure methane?

- Identify high and low emitters in the flock
- Develop breeding values for methane

Methods of measurement

PACs

Respiration Chamber

GreenFeed

Data Collection

Methane measurements collected using PAC

Results

	Lamb	Hogget	Lactating Ewe	Dry Ewe	Pregnant Ewe
No. recs	3,014	936	815	5,742	119
No. animals	689	494	455	4,145	60

Methane (g/day)

19.89

0.4-0.6 g CH₄ per kg live-weight

Genetics of methane (ewes)

Variation between ewes for methane?

Results to date

Measurement	No. Ewes	Avg methane	Heritability	Repeatability
Lactating	661	26.80 (6.60)	27%	48%
Dry	3,656	19.89 (6.95)	19%	43%

Combining ewe datasets
Correlation 0.72 → same trait

Breed differences

Next steps

Conclusion

- Methane measurements underway in sheep
 - Measuring commercial & pedigree flocks
- Results to date methane is under genetic control
 - Link to production traits
 - breed low emitters with high levels of performance
- Carbon sub-index to be developed
 - Incorporate into the Terminal & Replacement
 Indexes

Acknowledgements

GreenBreed (17/S/2135)

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

