12th World Congress on Genetics Applied to Livestock Production Rotterdam | The Netherlands 3-8 July 2022

Session 09. Challenges
Resource allocation and genetics of feed intake and efficiency (1)

> Feed efficiency and resource allocation trade-offs: theory, evidence and prospects

Frédéric DOUHARD, Rachel RUPP, and Hélène GILBERT

Feed efficiency and robustness: two research areas that tend to develop separately

Results of number articles on Web of Science in Category Agriculture Dairy Animal Science

TOPIC = Feed efficiency OR Residual feed intake

TOPIC = Robustness OR Resilience OR Trade-off* OR Resource allocation

Feed efficiency and robustness: two perspectives on livestock?

	Feed efficiency	Robustness
Production strategy	Less feed per amount of product under controlled conditions	Produce when feed quantity or quality can drop unexpectedly
Exemple of related traits	RFI; Feed conversion ratio	Survival; Longevity Disease resistance
Range of constraints	Narrow, focus on feed	Large, including feed, disease, biophysical conditions
Production intensity	Moderate to high	Low to moderate
Environmental impacts	Minimise negative impacts on the environment	Minimize overall reliance on inputs Provide ecosystem services
Global scenario	Sustainable intensification	Agroecology

A framework needed to predict the consequences of breeding for feed efficiency or robustness in contrasting environments

The resource allocation theory as a general framework to adress robustness & efficiency

J. Anim. Breed. Genet. 110/3 (1993) 161–170 © 1993 Verlag Paul Parey, Hamburg und Berlin ISSN 0931–2668 Ms. received: 15.1.1993

Agriculture and Forestry, The University of Melbourne, Parkville, Vic., 3052, Australia

Quantitative genetics and evolution:

Is our understanding of genetics sufficient to explain evolution?

By R. G. BEILHARZ, B. G. LUXFORD and J. L. WILKINSON

LIVESTOCK PRODUCTION SCIENCE

Livestock Production Science 56 (1998) 15-33

Undesirable side effects of selection for high production efficiency in farm animals: a review

W.M. Rauw^{a,*}, E. Kanis^b, E.N. Noordhuizen-Stassen^c, F.J. Grommers^c

The resource allocation theory as a general framework to adress robustness & efficiency

e.g. body weight

The resource allocation theory as a general framework to adress robustness & efficiency

- Consequences when feed resources drop?
 → Robustness
- To what extent increased production is supported by increased intake vs. increased allocation?
 → Efficiency

Current evidence for energy allocation trade-offs in livestock?

Beilharz et al. 1993; Rauw et al. 1998 Feed resources Resources acquisition rate Resource allocation strategy (s', g', r') Survival Reproduction Growth Natural sèlection e.g. body weight Breeding

Breeding value

applied to animal breeding

Outline

- What is the evidence for energy allocation trade-offs?
 - A global approach based on lines/breeds comparisons in livestock and related laboratory model species fed ad libitum

between parasite resistance and feed efficiency

Evolutionary Applications

François Lemaître

Evolutionary approaches to environmental, biomedical and socio-economic issues

livestock and related laboratory model species

First published: 11 November 2021 | https://doi.org/10.1111/eva.13320

How much energetic trade-offs limit selection? Insights from

Frédéric Douhard 🔀 Mathieu Douhard, Hélène Gilbert, Philippe Monget, Jean-Michel Gaillard, Jean-

ii. A case study in meat sheep focusing on trade-off

Future directions

(1) energy allocation constraints when selecting for productivity?

Selection on productivity

Survey of RMR comparisons between breeds/lines

- N = 19 with contrasting growth
- N = 6 with contrasting reproduction

(1) energy allocation constraints when selecting for productivity?

Growth traits	Effect on RMR	-	o 📙	+
M	ice			80
Jaı	panese quail		\bigcirc	\bigcirc
Ch	icken			888
Tu	rkey	\bigcirc		\bigcirc
Pig		88		
Go	pat	\bigcirc	\bigcirc	\bigcirc
Ca	ttle			

- RMR adjusted for allometry effect (dividing by BW^{0.75} or using BW as covariate)
- Different methods to measure RMR (indirect calorimetry, comparative slaugther technique)
- Most RMR estimates at single age/stage and mostly in young animals

- Selection experiments
- Comparisons of independent lines or breeds

(1) energy allocation constraints when selecting for productivity?

Maternal reproductive outputs traits

- Selection experiments
- Comparisons of independent lines or breeds

"Increased-intake" hypothesis

→ consistent with increase in intake and metabolic machinery during female reproduction

(2) consequences of energy allocation on health and/or reproduction?

Survey of comparisons of health or reproduction traits between lines selected for high vs. low feed efficiency (N = 13)

(2) consequences of energy allocation on health and/or reproduction?

Effect of reduced RMR (high efficiency) on reproduction	-	0	+
Mice	88		
Chicken (meat-type) Chicken (egg-type)	Egg number	Egg mass	Spermatic traits
Pig			Jaw DELlines
Cattle			low RFI lines

- Mostly female traits (litter size, egg number, calf mass at weaning ...); few male traits
- Some components of reproduction traits differently affected
- Higher feed efficiency → Lower feed intake but not always lead to lower reproductive outputs (e.g. in pig low RFI lines with higher body reserves mobilization during lactation)

(2) consequences of energy allocation on health and/or reproduction?

Effect of reduced RMR (high efficiency) on health

Mice

Chicken (meat-type)
Chicken (egg-type)

Pig

- Survival, immune responses, oxidative stress
- Some components of health traits differently affected
- Some traits particularily challenging to assess (e.g. oxidative stress → multiple markers, tissuedependence, age/stage dependence ...)

Main results

Consequences of breeding for feed efficiency or robustness look much more difficult to predict than one could anticipate from the energy allocation framework alone

- Few evidence that trade-offs between production traits and other fitness-related traits can be underpinned by changes in energy allocation
- Negative consequences of a reduced energy allocation to maintenance on health or reproduction are unclear

→ Focus on a particular aspect of energy allocation to maintenance that can be recruited under challenging conditions

- What is the evidence for energy allocation trade-offs?
 - A global approach based on lines/breeds comparisons in livestock and related laboratory model species fed ad libitum

A case study in meat sheep focusing on trade-off between parasite resistance and feed efficiency

Limitations and future directions

> Case study in meat sheep

(1) A trade-off between feed efficiency and resistance to parasites?

Experimental design

Romane meat sheep flock, INRAE experimental unit (Bourges, France)

Lines divergently selected on feed efficiency based on concentrates (efficient = RFI- vs. inefficient = RFI+)

Lines divergently selected on resistance to artificial infection with *Haemonchus contortus* (Resistant = R vs. Susceptible = S)

Tortereau et al. 2020. Animal

Sallé et al. 2021. Evol. App.

3,500 larvae / animal

tre

treatment 10,000 larvae / animal

imal

treatment

Naïve female lambs (4-5 months of age)

Infection 4 weeks

2 weeks

Infection 5 weeks

Parasites fecal egg count (FEC)

RFI during 2nd infection

	R	S
INFECTED	31	30
CONTROL	15	15

INRAe

> Case study in meat sheep

(1) A trade-off between feed efficiency and resistance to parasites?

Results

TREATMENT

Similar results in Urugayan sheep lines ← Ferreira et al. 2021 Anim. Prod. Sci.

Smarter

INRAe

Case study in meat sheep

(2) Is there a cost of resistance after all?

→ Importance of repeated-measures to account for direct infection costs (residual correlation r_e)

> Case study in meat sheep

(2) Is there a cost of resistance after all?

→ Infection of R and S ewes during the periparturient period when allocation to immunity may be constrained

Correlations infection | condition

Direct infection costs ($r_e < 0$) tend to prevail within-individual Some evidence for resistance costs $(r_{ind} > 0)$ among-individual

Douhard et al. in press. Evol. App.

Main results

Consequences of breeding for feed efficiency or robustness look much more difficult to predict than one could anticipate from the energy allocation framework alone

- Few evidence that trade-offs between production traits and other fitness-related traits can be underpinned by changes in energy allocation
- Negative consequences of a reduced energy allocation to maintenance on health or reproduction are unclear
- Our case study neither indicates that selection for a particular health component (parasite resistance) deteriorates feed efficiency during a challenge, nor *vice-versa*, but costs may occur in particular life stage and may be challenging to detect
 - → Direct or mechanistic support for the energy allocation framework applied to livestock still needs to be explored

Energy allocation to maintenance is difficult both to estimate and to interpret

- RMR or feed efficiency: two traits moderately heritable but challenging to measure accurately
- RMR or feed efficiency is more than one trait
 - Multiple processes
 - Interdependency between allocation components, between acquisition and allocation
- Can leads to context-dependent selection (e.g. selection for activity in indoor feeding systems vs. rangelands)

Which aspects of energy supply and expenditure constrain selection?

- Selective increase in productivity may not always be accounted for through higher intake
 - Physiological limits to feed intake
 - Environmental limits to feed intake
- Relation between RMR and health and reproduction traits is puzzling in general

Glazier 2015. Biol. Rev. Arnold et al. 2021. J. Comp. Phys. B

 Other mechanisms than resource allocation may lead to trade-offs between health/reproduction and productivity

Which aspects of energy supply and expenditure constrain selection?

Resource limiting conditions may not always be the most favourable environment to observe trade-offs

Do we look at the right traits to assess energy allocation trade-offs?

- Most studies of feed efficiency have focused on reproduction or health traits in young adult animals → Consequences on the long-term?
- Trade-offs early late life performance Lemaitre et al. 2015. Proc. R. Soc. B.

Do we look at the right traits to assess energy allocation trade-offs?

Early-late life performance trade-offs

In dairy goats:

Maturity Index ~ difference between 305d-milk yield in 3rd lactation and 305d-milk yield in 1st lactation

 r_G Maturity | Longevity = 0.37 in french population Arnal et al. WCGALP 2022 (session 34)

Maturity+

N = 10,000

Feed efficiency and resource allocation trade-offs: theory, evidence and prospects 04-07-2022 / WCGALP / Douhard – Rupp – Gilbert

> Three caveats in the allocation framework assessment

→ mixed evidence for the different energy allocation hypotheses ≠ support for the independence hypothesis

 \rightarrow no evidence for resource allocation trade-offs \neq no evidence for trade-offs caused by others mechanisms

→ no trade-off detected ≠ no trade-off occurs

Modelling as a way forward to bridge feed efficiency and resource allocation trade-offs

A framework needed to predict the consequences of breeding for feed efficiency or robustness in contrasting environments

More and more opportunities to combine experimental approaches with resource allocation modelling

- Quantitify resource allocation to particular function (e.g. energy allocation to parasite resistance in sheep)
- Calibrate individual allocation strategies (s, g, r)
 e.g. Ramirez et al. WCGALP 2022 (session 14)
- Estimate genetic variances / covariances of resource allocation parameters e.g. Doeschl-Wilson et al. 2007 Animal; 2008. GSE

Scale-up consequences of energy allocation when breeding for feed efficiency

- short-term efficiency → lifetime efficiency e.g. Puillet et al. 2016. GSE
- Individual efficiency → herd efficiency
- Trade-offs / synergies between feed efficiency and robustness

Explore adaptation strategies to climate change to orientate breeding objectives and promote agroecology

To Carole Moreno

(1) energy allocation constraints when selecting for productivity?

Growth traits	Effect on RMR	_	o 👖	+
Mi	ce	80	80	80
Jap	oanese quail		\bigcirc	
Ch	icken			888
Tui	rkey		\bigcirc	
Pig		88		88
Go	at		\bigcirc	
Ca	ttle			

- RMR adjusted for allometry effect (dividing by BW^{0.75} or using BW as covariate)
- Different methods to measure RMR (indirect calorimetry, comparative slaugther technique)
- Most RMR estimates at single age/stage and mostly in young animals
- RMR tends to be inversely related to fatness

Do we look at the right traits to assess energy allocation trade-offs?

- Most studies of feed efficiency have focused on reproduction or health traits in young adult animals → Consequences on the long-term?
- Trade-offs early late life performance Lemaitre et al. 2015, Proc. R. Soc. B.
- Potential of new biomarkers (telomere dynamics, age- specific changes in the DNA methylation) to mesure late life performance

Simpson and Chandra 2021. Aging Cells Ilska-Warner et al. 2019. Front. Genet. Caulton et al. 2021. Genes