Using machine learning to predict feed intakes of meat sheep from animal traits and ruminal microbiota

Q. Le Graverand, C. Marie-Etancelin, J.L. Weisbecker, A. Meynadier, D. Marcon, F. Tortereau

Context

Why predict feed intake?

Necessity for complex traits (e.g. feed efficiency)

Environmental/societal/economic stakes

Only two breeding sheep compagnies record feed intakes in France

Study objectives:

Check:

- The accuracy of feed intake predictions from microbiota data
 / host traits
- The relevance of predictions for the genetic evaluation

Study population – Residual Feed Intake lines

277 Romane of lambs of two RFI divergent lines (G2 & G3)

Regression: Feed intake = μ + Fixed effects + β_1 ADG + β_2 fBW^{0.75} + β_3 MD + β_4 BFT + ξ

Divergent selection to get the study population:

For the G2 & G3: divergence of 1.9 $\sigma_{genetic RFI}$

$$\mu_{\text{RFI-, feed intake}} = 2,043 \text{ g/d}$$

$$\mu_{RFI+, feed intake} = 2,155 \text{ g/d}$$

Experimental protocol

Legend:

I - Accuracy of feed intake predictions from

microbiota data and host traits

Statistical approach to predict feed intake

Three sets of predictors

Gold standard

Host traits

Weights (at 145d, start, end)
Average Daily Gain
Muscle Depth
Fat Thickness

(6 variables)

Rumen microbiota

16S (bacteria + archaea)

496 OTUs

(496 variables)

Host traits

&

Rumen microbiota

(592 variables)

Three machine learning approaches

sPLSR: sparse Partial Least Squares Regression (R, mixOmics)

SVR: Support Vector Regression (R, e1071)

RFR: Random Forest Regression (R, caret + randomForest)

K-fold cross-validations nested in leave-one-group out cross-validations

With 277 lambs raised over 3 years

Predicting feed intake of an independent cohort:

Two different years

1 Training set

Tuning through repeated 5-fold cross-validations

Model fitting

Third year

2 Testing set

Prediction of feed intake

Correlation between predictions & real

phenotypes

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

Note: 2020 lambs' sires are part of 2018
 → 2018 is not used as a testing set

- Note: 2020 lambs' sires are part of 2018
 → 2018 is not used as a testing set
- Higher correlations with host traits predictors than 16S data

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

- Note: 2020 lambs' sires are part of 2018
 → 2018 is not used as a testing set
- Higher correlations with host traits predictors than 16S data
- Combining 16S data and traits does not improve correlations

a,b Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

- Note: 2020 lambs' sires are part of 2018
 → 2018 is not used as a testing set
- Higher correlations with host traits predictors than 16S data
- Combining 16S data and traits does not improve correlations
- No difference between approaches

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

- Note: 2020 lambs' sires are part of 2018
 → 2018 is not used as a testing set
- Higher correlations with host traits predictors than 16S data
- Combining 16S data and traits does not improve correlations
- No difference between approaches
- Microbiota alone or combined with traits is not an advisable predictor

II - Relevance of predictions for the genetic

evaluation

Estimation of breeding values for feed intake

With:

- PEST software
- $h^2 = 0.28$ (Tortereau et al., 2020)
- a pedigree of ~ 4 000 animals

Population for the genetic evaluation (subset from 2018 to 2020):

~ 3 700 sheep without records

Two different years

True feed intakes

Third year

Predictions

Compute correlation EBVs of predictions and EBVs of true intakes

277

records

[•] Note: 2020 lambs' sires are part of 2018

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

Note: 2020 lambs' sires are part of 2018

 Combining 16S data and traits for predictions does not improve correlations between EBVs

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

Note: 2020 lambs' sires are part of 2018

 Combining 16S data and traits for predictions does not improve correlations between EBVs

One difference between machine learning approaches

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

• Note: 2020 lambs' sires are part of 2018

 Combining 16S data and traits for predictions does not improve correlations between EBVs

- One difference between machine learning approaches
- **16S** data: no improvement for the genetic evaluation of <u>predicted</u> feed intake

^{a,b} Comparisons with Dunn & Clark's z test (adjusted p-value <0,05)

✓ Rumen microbiota data: no improvement of feed intake predictions in sheep

Similar to sPLSR results in rabbits (Velasco-Galilea et al., 2021)

✓ Correlations between actual RFI and predictions from 16S: from -0.15 to 0.19

✓ Microbiota data: no improvement for the genetic evaluation of **predicted** feed intake

- ✓ Predict from different omics: metabolomics, genomics, phenomics
- ✓ Predict additional traits: greenhouse gases emissions
- ✓ Need for research into the phenotyping strategy
 - Training/testing sets partitioning: contemporaneous animals, genetic connections
 - Number of samples/records: machine learning predictions, genetic evaluation (see abstract)

