GrassToGas: Strategies to mitigate greenhouse gas emissions from pasture-based sheep

Nicola Lambe SRUC

International Project, 10 partners from 7 countries, 2019-2023

Norway

UK

NZ

Ireland

France

Turkey

Uruguay

WP1. Novel traits to improve resource use efficiency

Identify novel phenotypes related to resource use efficiency:

- feed efficiency
- body tissue mobilisation
- methane emissions

Air flow Outlet CH₄ and CO₂ Sample Intake Air flow Meter Feed Bin Tracer Nose Position Sensor/ RFID Reader Tracer Release Points Sample Flow CH₄ and CO₂ Sensors France

Previously?

NSG

METANMÅLEREN

Uruguay

Norway

Ireland

++ others...

Grass to Gas project (2019-2023)

Strategies to mitigate GHG emissions from pasture-based sheep systems $\,SRUC\,$

GrassToGas solutions

- Develop breeding and feeding approaches to mitigate GHG emissions from pasture-based sheep systems
- Deliver applied solutions to methane emissions by combining precision animal monitoring and new genetic/genomic technologies
- Quantify economic and environmental benefits of more feedefficient and lower GHG-emitting sheep

 Validate predictors of feed intake, feed efficiency and methane emissions

2. Compare indoor vs outdoor feed efficiency and methane emissions

- 3. Investigate the opportunity to use genetics and genomics to reduce methane (CH₄) emissions
 - genetic control feed efficiency and methane?
 - impact of genetic selection on CH₄?
 - genomic diversity of rumen microbial communities?
 - links between phenotypes and host genome?

 Quantify economic and environmental benefits of more feed-efficient and lower GHG-emitting sheep

Identify / quantify potential trade-offs via modelling approaches

Ensure relevance from farm to international impact scale

5. Deliver applied solutions – Impact delivery

Communication of outcomes to industry and policy - recommendations

Progress – where have we got to?

 Focus on measuring methane emissions, feed efficiency, potential predictors, animal performance (COVID delays)

Direct measurement of methane emissions

Norway, Ireland, France, Uruguay, NZ (& soon UK!)

Computation of methane emissions, oxygen consumption, CO₂ emission /kg LWT /hr

Number of animals - Collected data (projected total number)

TRAIT	INRAE	SRUC	INIA	Teagasc & Sheep-IE	NMBU	AGRES*	ICLRT
Feed intake (concentrate)	451						
Feed intake (forage)	408	239	1,770	228 (400)	80	X	
Feed intake (water)	402						
GHG emissions	~50 (350)		1,707	1,180 (2,500)	80	X	
Body weights – ADG	451	481	1,770	540 (1,500)	80	X	Χ
Body composition: ultrasound	451	481	1,770	60 (800)		X	
Body composition: CT-scanning and							
MRI	48	347				X	
Body composition: MRI	24						
Carcass traits		360	100	200 (800)		X	
Body condition scores	~50		1,770	850 (1,100)	40	X	
Rumen volume (CT scan)	48	347				X	
Blood metabolites	277			60 (200)			
Genetic markers	349		1,410		39		
NIRS on faeces	277						
Ruminal datasets	277		100 (300)	60 (200)	48	Х	
RumiWatchSystem				60			
Feed quality	Х	Х	Х	Х	Х	Х	Х

^{*}AgResearch – no GrassToGas experimental work; data available from other trials

Validating predictors of FI & methane

- Summer 2021 and 2022
- Texel x Mule finishing lambs (n = 481)
 - sired by performance-recorded Texel sires (EBV range)
 - recorded through feed intake recording equipment (n = 239)
 - forage-based diet (grass nuts)
- CT and ultrasound scanned at start & end
 - body composition for efficiency calculations
 - CT rumen volume as methane predictor
- Growth and feed quality measured
- Prediction equations for feed efficiency

Indoor vs outdoor FE & methane

- Summer 2021 and 2022
- Texel x Mule finishing lambs
 - siblings of lambs in indoor FI equipment
 - grazed on pasture (n = 242)
- Record:
 - grazing offtake
 - growth
 - body composition (US all & CT sub-sample)
 - CT rumen volume (sub-sample)
- Related lambs compared indoor/outdoor

Feed efficiency:

- Protocols and models further developed and shared (Residual Feed Intake; RFI)
- Between and within-breed variation confirmed
- Moderate heritability estimates across research groups

Residual Feed Intake (RFI)

actual feed intake - predicted feed intake

(due to growth, metabolism, composition changes etc.)

Feed efficiency:

- Differences between forage-based diets (grass / silage of differing quality)
- Positive correlations between indoor concentrate intake, indoor forage intake and RFI
- Feed intake at grazing (n-alkane technique) highly correlated with intake measured indoors

Feed efficiency:

- Feed intake behaviour (no. meals, meal duration etc.) explained large % RFI variation
- No significant relationships with CT-measured rumen volume (prelim. analyses)
- Ruminal microbiota and metabolomics no clear relationships (prelim. analyses)

x = RFI vs pretrial rumen vol

x = RFI vs posttrial rumen vol

Methane emissions:

- Protocols and models have been further developed and shared
- Between and within-breed variation confirmed
- Moderate heritability estimates across groups
- Differences due to forage-based diet (silage quality; grass v silage)

GrassToGas

Methane emissions:

- High correlations of PAC and respiration chamber measurements
- High emitters of methane have larger rumens
- Rumen microbiome genomic sequencing promising results

Feed efficiency vs methane (CH₄) emissions:

- Preliminary correlations (phenotypic & genetic) amongst:
 - -CH₄ emissions (per day)
 - -CH₄ yield (per unit DMI)
 - -Feed intake
 - -Residual Feed Intake (RFI)
- PAC gas emissions (CH₄, O₂, CO₂ + growth) explain large % of feed intake

Conclusions

- SRUC
- Promising tools are being developed to measure traits related to GHG emissions from sheep

Will enable genetic/ genomic selection for reduced methane emissions

- International collaboration is key:
 - Avoids duplication of research effort / funding
 - Pools expertise
 - Accelerates industry implementation
 - Global problem requires global solution

More information

Twitter: https://twitter.com/grasstogas

Website https://www.eragas.eu/en/eragas/research-

Website https://

Many thanks!

Click here to subscribe