

On the accuracy of resilience parameters

M. Ghaderi-Zefreh; A. Doeschl-Wilson; V. Riggio; O. Matika; R. Pong-Wong

EAAP Annual meeting 2020

Introduction and objectives

Resilience (Stay productive under challenged condition)

resilience $\propto |\text{slope}|^{-1}$

Performance potential ∝ intercept

Roadblocks

- Sparsity of data
- Unknown environmental challenge level

Accuracy of EBV as a function of:

- Distribution of phenotyped animals
- Genetic architecture
- Not knowing the level of environmental challenge

Method

Simulation of population

Simulation of phenotypes (2nd generation)

Phenotype = <u>intercept</u> + (challenge level) * <u>slope</u>

(parameters) = (population mean) + (genetic deviation) + (environmental deviation)

$$h_{slope}^2 = h_{intercept}^2 = (0.1 \quad 0.3)$$
 $\rho = (-0.5 \quad 0.0 \quad 0.5)$

Method

Phenotyped animals (2nd generation) are allocated:

Scenario 1: Randomly in all environments

Scenario 2: In **Cluster**s (families). Families are randomly allocated

Scenario 3: In **assortative** clusters. Best sire is reared in the best farm. A bad sire in bad farm ...

Using pedigree information (BLUP) or genomic information (GBLUP)

predict BV for 3rd generation

Results (1) – distribution of phenotyped animals

Accuracy at low and high heritabilities

heritability

high low

- GBLUP > BLUP
- Intercept > slope
- Intercept is more sensitive to scenarios
- Random allocation gives best accuracy for both intercept and slope

Regression coefficient

- High heritability and GBLUP are less biased.
- No significant difference between scenarios and between parameters (slope and intercept)

Results (2) – genetic correlation

Accuracy for low heritability

Accuracy $\propto (1 + \rho)$

Regression coefficient

Uncorrelated data are biased

Results (3) – Unknown environmental challenge – 1

- 2-stage reaction norm:
 - 1. Farms are fitted as fixed effect
 - 2. Farm effects are used as challenge level for all animals within that farm
- Diversity of farms

Hypothesis:

- Unknown challenge level for each individual reduces accuracy
- The larger the farms (groups) are the poorer the accuracy is

Results (3) – unknown environmental challenge – 2

Impact of genetic correlation

Accuracy with known X, and unknown X with farms having different range (10%, 20% and 30% of total environment)

rr*: known X, known variance component

rr: known X

rn20: Unknown X, farms covering 20% of total environment

Results (3) – unknown environmental challenge – 3

Impact of distribution of phenotyped individuals

Accuracy for known X, and unknown X with farms having different range (10%, 20% and 30% of total environment)

rr*: known X, known variance component

rr: known X

rn20: Unknown X, farms covering 20% of total environment

Conclusions - 1

GBLUP > BLUP

```
performance potential (45% ~ 166%) resilience (47% ~ 114%)
```

Random allocation gives the best accuracy

For intercept: Random > Random cluster > assortative cluster

For slope : Random > assortative cluster \geq^* Random cluster (* not significantly different)

- Intercept (Performance potential) is more sensitive to allocation of phenotyped individuals
- Intercept > slope

Conclusions - 2

Trade-off reduces the accuracy

Accuracy \propto (1 + genetic correlation)

- Diversity of farms has less effect on accuracy when using GBLUP
- If genetic correlation > 0 → unknown environmental challenge does NOT reduce accuracy

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

