PHD fundings: 50% SMARTER (UE H2020) + 50% RESILAIT (APISGENE)

Toward genetic selection for resilience based on milk metabolites

Marie Ithurbide - Rachel RUPP - Nicolas FRIGGENS

Hypothesis

There is a diversity of metabolic strategies to respond to an underfeeding challenge, and these strategies are part of the heritable resilience mechanism in the dairy goat

0.75

0.50

0.25

0.00

400

800

Age (days)

High_LGV

1200

3

Functional longevity

	2017	2018	2019	2020	2021	Total
Low_LGV	48	46	39	40	39	212
High_LGV	45	45	42	68	28	228
Total	93	91	81	108	67	440

Metabolic response to underfeeding challenge

Underfeeding challenges

- Early lactation primiparous goats
- Two days on straw

Measures

- 14 milk metabolites
- Production, Fat content, Protein content, SCS
- From day -7 to day +6

	Year of the underfeeding challenge /				
	INRAE facility				
	2020	2021	2021	2022	Total
	P3R Bourges	P3R Bourges	Paris	Paris	
Low_LGV	15	14	17	14	60
High_LGV	18	22	17	21	78
Total	33	36	34	35	138

INRAE experimental facility of Bourges

Like a classical PCA, the linear principal component decomposition explains as much of the variation as possible

lsocitrate

Days from challenge

|--|

uesign				Unsupervised clustering	Conclusion
--------	--	--	--	----------------------------	------------

Higher body fat mobilisation during challenge

Sharper decrease and slower increase of the milk sugars and protein related metabolites

Inflammatory indicator remains longer

- A powerful statistical approach for exploratory characterization of multivariate longitudinal data
- A type of metabolic response to dietary challenge, characterized by high lipomobilization, high milk glucose depletion and high inflammatory response, associated with poor survival
- Several milk metabolites profiles seem heritable

Multivariate analysis of non-invasive milk measures shows potential

for deriving new resilience phenotypes

Milk metabolite concentration

Milk metabolite curves modelling

Metabolic trajectory

modelling

ajectory ng

Unsupervised clustering

Unsupervised clustering

16