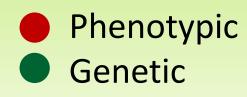
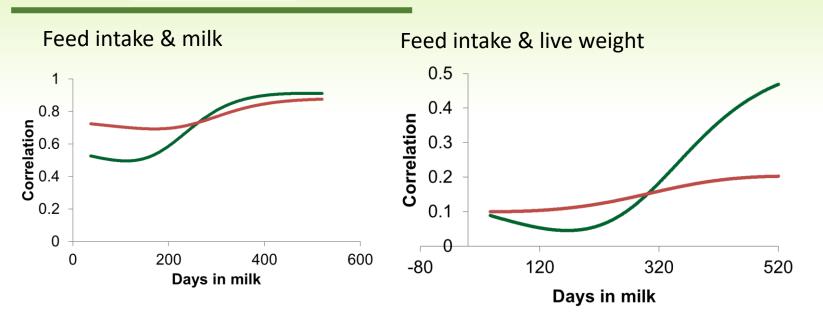
WP1 - Task 1.3 Genetic correlations between feed efficiency and production traits

Task leader: SRUC

Involved partners: UNILEON, INRAe, AUTH, NSG, INIA-UY, ICAR

May 2023


Toledo - Final meeting



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 772787

Yorkshire Dairy goats
 10,000 1st lactation TD records
 Pedigree with 6,644 animals
 Phenotypes from 1,146 animals on
 2 farms

2. Genetic & phenotypic parameters for FI, BW, MY using rr model FE age at first kidding, yearseason of birth, herd year test day, DIM (3rd order Legendre polynomial) covars: body wt, milk yield

- Selection for MY results in a rise in feed intake
- Sufficient genetic variation to select for feed efficiency in goats
- Should be incorporated into multi-trait selection index due to positive correlation between feed intake and body weight

	Heritability
Methane emission (gram/hour) corrected for weight	0.18
Methane emission (mol/hour) corrected for "feed intake proxy"	0.34

- >6000 animals measured once in 57 flocks
- 2. GHG, BW
- 3. Genetic determinism GEI

	Birth	Carcass	EUROPE	EUROPE	Brith	42-day	Carcass	Fleece	Fleece
	Weight	Weight	Carcass	Fat	Weight	Weight	Weight	Weight	Classifcation
			Classification	Grading	(mat)	(mat)	(mat)		
Methane corrected	-0.11	0.02	-0.08	-0.27	0.23	0.32	0.25	0.04	0.07
weight	-0.11	0.02	-0.06	-0.27	0.25	0.52	0.25	0.04	0.07
Methane corrected	0.09	-0.18	0.04	0.00	0.00	0 16	0 1 9	0.05	0.05
"feed intake proxy"	-0.08	-0.18	0.04	0.00	0.00	0.16	0.18	0.05	0.05

- Genetic correlations between methane and maternal traits:
 - Corrected for weight, undesirable
 - Corrected for feed intake proxy, uncorrelated

To estimate genetic and phenotypic correlations of **milk fat and lactose content (indicators of feed efficiency)** with daily **milk yield** in commercial populations of **Chios** and **Frizarta** dairy sheep in Greece

- Commercial populations:
 - 2 dairy sheep breeds (469 Frizarta, 369 Chios)
 - 2 semi intensive + 2 intensive farms (1 of each/breed)
 - 4 farms (2 f/breed)
 - Selection for MY results in a rise in feed intake
- Phenotypes:
 - 2 consecutive milking periods
 - Individual monthly records: milk yield, fat content, lactose content
 - 3-7 milking recordings/milking period/farm

Frizarta sheep \rightarrow lactose content could be used to select for improved feed efficiency without compromising milk yield

Frizarta and Chios sheep \rightarrow Selection for higher feed efficiency using milk fat content as a proxy trait might unfavourably affect milk yield

FRIZARTA	DMY	FT	LC	CHIOS	DMY	FT	LC
Daily milk yield		-0.81 (0.25)	0.50 (0.52)	Daily milk yield		-0.66 (0.28)	NA
Fat content	-0.26 (0.03)		-0.53 (0.31)	Fat content	-0.43 (0.03)		NA
Lactose content	0.23 (0.03)	-0.39 (0.02)		Lactose content	0.22 (0.03)	-0.21 (0.03)	

Bold, genetic correlations

INRA

951 Romane male lambs, 3-5 month old fed *ad libitum* with low-energy concentrated pellets

Individual feed intake recorded over 6 weeks Pedigree with 4,894 animals

- ✓ RFI is genetically independent of production traits (except Muscle Depth)
- ✓ FCR is genetically independant of production traits (except Backfat Thickness)
- ✓ Efficient animals eat less per day, but more at each visit, and they do less visit per day to the feeder

Genetic correlations	FI	RFI	FCR
Body weight	0.60 (0.13)	-0.03 (0.19)	-0.77 (0.09)
Backfat Thickness	0.31 (0.16)	0.00 (0.16)	0.01 (0.18)
Muscle Depth	-0.12 (0.19)	- 0.30 (0.15)	-0.15 (0.18)
Av. Daily Gain	0.59 (0.13)	-0.03 (0.20)	-0.77 (0.09)
Feed Intake		0.78 (0.08)	0.10 (0.21)
RFI	0.78 (0.08)		0.65 (0.12)
FCR	0.10 (0.21)	0.65 (0.12)	
Feed. Duration / day		0.41 (0.13)	
Nb. Visits /day		0.51 (0.14)	
Feed Intake /visit		-0.33 (0.14)	
Feed Duration /visit		-0.22 (0.17)	
Time between visits		-0.56 (0.13)	

Lacaune Dairy Breed

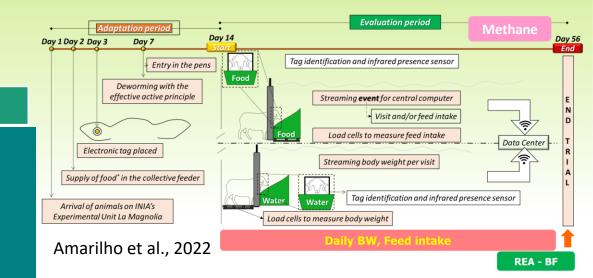
Genetic correlations	Net Energy converted in milk ratio	Residual energy intake (REI)
Daily Milk Yield	0.74 (0.04)	-0.79 (0.04)
Fat Content	0.11 (0.07)	0.46 (0.06)
Protein Content	-0.18 (0.07)	0.75 (0.04)
Net Energy converted in milk ratio		-0.63 (0.06)
Residual Energy Intake	-0.63 (0.06)	

On-farm datasets

!! Group feed intake mainly
for forages and concentrates

Alpine and Saanen breeds

Heritabilities and Repetabilities		Alpine	Saanen
Residual energy intake	h²	0.18 (0.08)	0.20 (0.07)
Residual energy intake	r	0.31 (0.08)	0.13 (0.06)
Milk yield	h²	0.19 (0.09)	0.20 (0.07)
Milk yield	r	0.37 (0.09)	0.38 (0.07)


		Mear	n (sd)	(n)		
		Merino				
Body weight (kg)		40.9	6.4	1195		
Intake (kgDM/a/d)		1.4	0.3	1195		
Methane (g/a/d)		22.3	5.6	1195		
REA (cm²)		7.5	1.5	1195		
FAT (mm)		1.9	0.7	1195		
Body CS		2.8	0.4	1217		
Fleece weight (kg)		3.1	0.9	73968		
Fiber diameter (µ)		16.3	1.7	73744		
FEC		1298	1905	35399		

Genotyped Corriedale 1056; Merino 3179; Dohne (DNA stored)

2016 (IN) - 143 (commercial) = 2159

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement N⁰ 772787

RFI model: age, pen-trial, average daily gain, mean metabolic body weight

Smarter

Preliminary results: Marques et al. 2022. 12th WCGALP. 160-163 New analyses: Marques et al, in preparation

Merino

Heritability (sd) - diagonal - bold

URUGUAY

	FW	FD	BW	FEC	CH4	FI	RFI	REA	BF
FW	0.30 (0.01)	0.35 (0.02)	0.29 (0.02)	<i>0.03</i> (0.05)	<i>0.17</i> (0.15)	<i>0.18</i> (0.12)	0.02 (0.15)	0.07 (0.08)	0.15 (0.11)
FD	0.13	0.64 (0.01)	0.25 (0.02)	-0.08 (0.04)	0.17 (0.17)	0.20 (0.14)	<i>0.15</i> (0.15)	0.13 (0.08)	0.40 (0.08)
BW	0.45	0.13	0.41 (0.01)	-0.07 (0.04)	0.58 (0.15)	0.68 (0.09)	-0.22 (0.14)	0.50 (0.06)	0.44 (0.08)
FEC	-0.02	-0.05	-0.07	0.20 (0.01)	<i>-0.20</i> (0.20)	-0.06 (0.22)	<i>0.13</i> (0.19)	<i>-0.21</i> (0.11)	-0.02 (0.15)
CH4	0.15	0.09	0.30	0.08	0.34 (0.09)	0.75 (0.12)	0.43 (0.19)	0.37 (0.17)	0.36 (0.15)
FI	0.34	0.14	0.48	-0.04	0.29	0.41 (0.08)	0.79 (0.09)	0.39 (0.14)	0.34 (0.12)
RFI	0.00	-0.01	-0.02	-0.08	-0.02	0.63	0.37 (0.08)	-0.15 (0.20)	-0.17 (0.16)
REA	0.23	0.18	0.47	-0.02	0.13	0.30	-0.02	0.39 (0.04)	0.53 (0.10)
BF	0.10	0.03	0.24	-0.09	0.04	0.11	0.01	0.21	0.32 (0.04)

P correlation

FW fleece weight, FD fibre diameter, BW bodyweight, FEC faecal egg count, CH4 daily methane, FI feed intake, RFI residual feed intake, REA rib eye area, BF backfat thickness

G correlation (sd)

Final comments

- 1. Genetic correlations for meat sheep (3), dairy sheep (3) and dairy goats (3) between feed efficiency and production traits have been estimated
- 2. Increase in production (milk yield, BW) associated with an increase in feed intake
- 3. Increase in production (BW) associated with an increase in methane emissions
- 4. Selecting against feed intake/methane emissions will have undesirable consequences on production -Multi-trait selection index is suggested
- 5. Lactose content can be used to select for more efficient goats, without unfavourably affecting MY. Fat content can be used, however unfavourably correlated with MY
- 6. REI (on-farm) positive correlated with MY and negatively with FC and PC
- 7. **RFI** not unfavourably related with most (MD) of production traits in meat sheep, and favourably correlated with methane and feed intake.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 772787

PROJECT PARTNERS

SMAll RuminanTs breeding for Efficiency and Resilience

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 772787

www.smarterproject.eu

SMAll RuminanTs breeding for Efficiency and Resilience

Gracias por su atención!