

WP5: Genomic/genetic modelling and methods of selection for resilience and efficiency traits

**Activities coordinated by UEDIN** 



## **WP** Objectives

- Develop genetic models to deal with resilience and efficiency under micro- and macro- environmental challenges
- 2. Infer (genomic) breeding values for R&E from longitudinal data on productive traits
- Develop and assess methods for genomic prediction particularly suited to small ruminants
- 4. Develop and implement new methods for selected and under-utilised populations of sheep and goats while conserving genetic variability

## **Objectives and Tasks**



## Objectives

Tasks

Develop genetic models for R&E under micro- and macro- environmental challenges

Novel genetic models for efficiency and resilience traits under challenge

Infer (genomic) breeding values for R&E from longitudinal data on productive traits

Data mining of longitudinal performance data to identify and characterise events of environmental challenges

Develop and assess methods for genomic prediction suited to S&G

Enhancing performance of genomic prediction methodology

Develop and implement new methods for selected and underutilised populations of S&G while conserving genetic variability Incorporating genomic information to improve management of genetic diversity and to promote expression of heterosis

## Deliverables and Milestones



| Number | Title                                                                                                                                                                                                                                                       | Lead<br>beneficiary | Due<br>date<br>(M) | Due date     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|--------------|
| MS17   | A computer software for genomic prediction taking into account the effect of environmental challenge on performance                                                                                                                                         | UEDIN               | 18                 | 30/04/2020   |
| MS19   | A computer software or method for assessing and avoiding potential bias due to design of cross-validation analysis                                                                                                                                          | INRA                | 18                 | 30/04/2020   |
| MS20   | A computer software to improve calculation of genomic relationship between purebred and crossbred populations                                                                                                                                               | UEDIN               | 18                 | 30/04/2020   |
| D5.1   | Method for identifying environmental challenge events and assessment of their value for selection for resilience                                                                                                                                            | INRA                | 24                 | 31/10/2020   |
| D5.2   | A report on novel methods and breeding practices to improve genomic prediction in sheep and goat populations                                                                                                                                                | UEDIN               | 36                 | 31/10/2021   |
| MS18   | A list of populationwise environmental challenges                                                                                                                                                                                                           | INRA                | 24                 | 31/10/2020   |
| MS21   | A computer software to optimise genetic contribution                                                                                                                                                                                                        | UEDIN               | 24                 | 31/10/2020   |
| D5.3   | Method for assessing potential bias due to design of crossvalidation analysis                                                                                                                                                                               | INRA                | 36                 | 31/10/2021   |
| D5.4   | A report for optimum contribution to manage diversity at critical regions and to assist mating design to maximise heterozygosity and expression of heterosis and evaluation of level inbreeding rate across genomic regions and their impact on performance | UEDIN               | 36                 | 31/10/2021   |
| DE E   | A manuscript on the development and testing of genomic evaluation tools to improve resilience and efficiency accounting for the impact of environmental                                                                                                     | HEDIN               | 40                 | 24 /10 /2022 |
| D5.5   | challenge and using novel phenotypes                                                                                                                                                                                                                        | UEDIN               | 48                 | 31/10/2022   |



# Task 5.1: Novel genetic models for efficiency and resilience traits under challenge (M1-M48)

#### Objective of the task

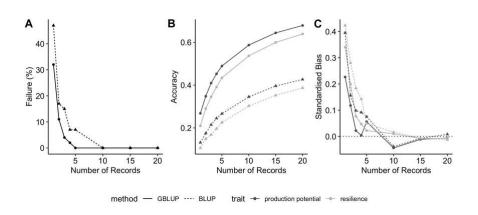
 Develop genetic models to deal with resilience and efficiency under microand macro- environmental challenges

#### Work done

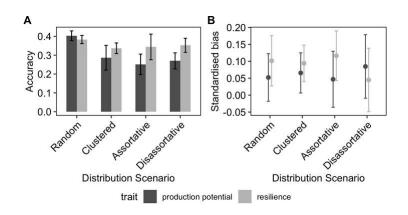
- Simulation study
  - · to assess the factors affecting the performance of RR-RN models
  - To quantify the potential benefit when selecting for resilience



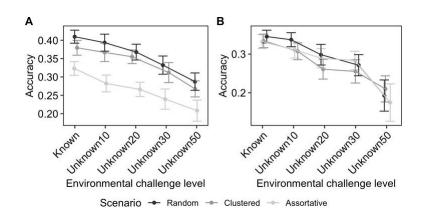
## Genomic prediction with random regression/reaction norm models



#### Effect of allocation of phenotype across environment

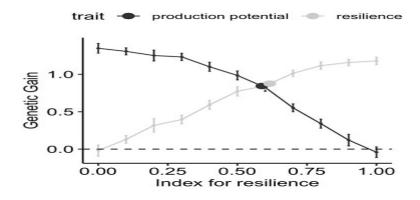


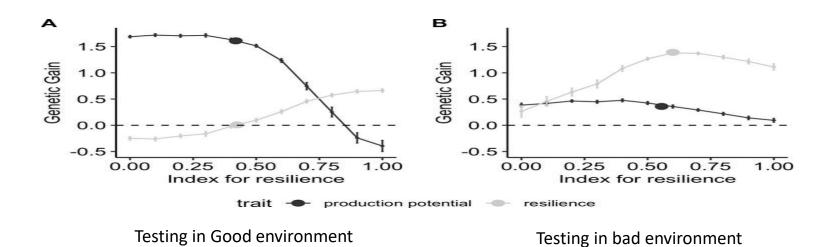
#### Effect of uncertainty of level of challenge





## Genomic selection with random regression/reaction norm models







# Task 5.2: Data mining of longitudinal performance data to identify and characterise events of environmental challenges (M1-M36)

## Objective of the task

 Infer (genomic) breeding values for R&E from longitudinal data on productive traits

#### Work done

UEDIN NOT INVOLVED IN THIS TASK



## Task 5.3: Enhancing performance of genomic prediction methodology (M1-M36)

## Objective of the task

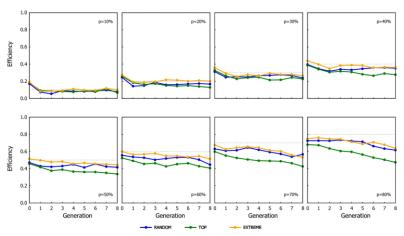
 Develop and assess methods for genomic prediction particularly suited to small ruminants

## Work done: Simulation study on:

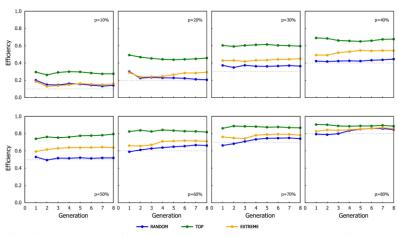
- the proportion and genotyping strategies when selection based on ssGBLUP evaluation
- The effect of including dominance effect in the model of analysis. (D5.2)
- The accuracy of across-population prediction when accounting for divergency between population (D5.2)

## Impact of genotyping strategies of benefit of ssGBLUP

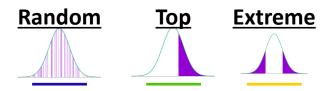




Efficiency of the scsGLIVP in term of their overall reliability (combining both genotyped and ungenotyped animals) using three genotyping strategies, when the proportion of the genotyped candidates was chosen based on phenotypes. The dotted line in each graph indicates the proportion of candidates that were genotyped in the corresponding scenario shown in the graph



Efficiency of the ssGBLIV scenarios in terms of their cumulative genetic response using three genotyping strategies, when the proportion of the genotyped candidates was chosen based on estimated breeding values. The dotted line in each graph indicates the proportion of candidates that were genotyped in the corresponding scenario shown in the graph



| Gain | TOP ≥ EXTREME ≥ RANDOM  |
|------|-------------------------|
| r2   | EXTREME >> RANDOM > TOP |

# Accounting for dominance in model of analysis: Accuracy of GEBV



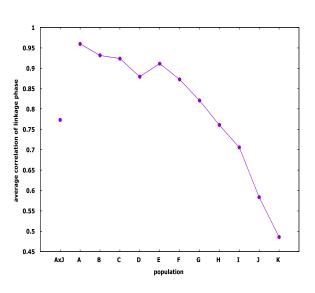
|                                                             | Individuals with records      |                                                 |                                            | Individuals without records |                                                 |                                            |  |
|-------------------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------|-----------------------------|-------------------------------------------------|--------------------------------------------|--|
|                                                             | Model of analysis             |                                                 |                                            | Model of analysis           |                                                 |                                            |  |
| True $\sigma_d^2$                                           | Additive<br>only              | Dominance<br>breeding value<br>parameterisation | Dominance<br>genotypic<br>parameterisation | Additive<br>only            | Dominance<br>breeding value<br>parameterisation | Dominance<br>genotypic<br>parameterisation |  |
| GBLUP using variance component estimated with REML analysis |                               |                                                 |                                            |                             |                                                 |                                            |  |
| 10                                                          | 0.509                         | 0.509                                           | 0.509                                      | 0.302                       | 0.302                                           | 0.304                                      |  |
| 20                                                          | 0.485                         | 0.485                                           | 0.483                                      | 0.282                       | 0.282                                           | 0.282                                      |  |
| 30                                                          | 0.467                         | 0.467                                           | 0.466                                      | 0.273                       | 0.272                                           | 0.269                                      |  |
|                                                             | GBLUP using the true variance |                                                 |                                            |                             |                                                 |                                            |  |
| 10                                                          | 0.510                         | 0.510                                           | 0.509                                      | 0.303                       | 0.302                                           | 0.302                                      |  |
| 20                                                          | 0.486                         | 0.486                                           | 0.484                                      | 0.282                       | 0.283                                           | 0.282                                      |  |
| 30                                                          | 0.486                         | 0.486                                           | 0.484                                      | 0.282                       | 0.283                                           | 0.282                                      |  |

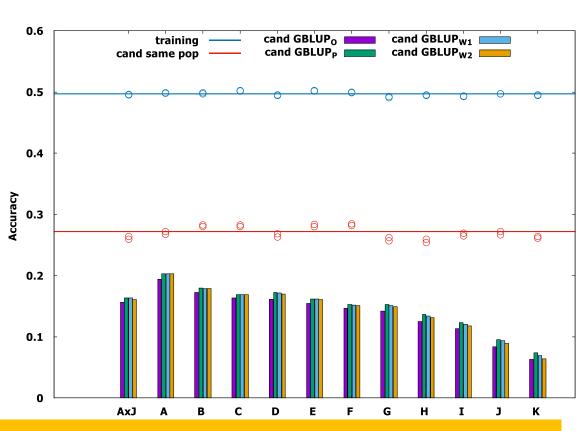
No improvement in accuracy when accounting for dominance

# Accuracy of GEBV in reference and divergent populations



- · Method of estimating GRM across population
- Standard GRM (GBLUP\_o)
- Allele specific (GBLUP\_p)
- SNP weighed by persistence of LD
- SNPweighed by persistence of LD

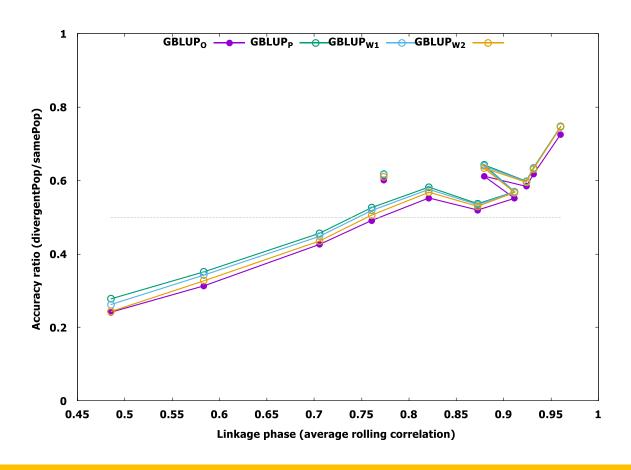




Very minor benefit when using specific allele frequency or Reweight for SNP for persistence of LD

## Effect of persistence of LD





Persistence of LD affect accuracy, but minor effect when modifying GRM to account for persistence



# Task 5.4: Incorporating genomic information to improve management of genetic diversity and to promote expression of heterosis (M1-M36)

#### Objective of the task

 Develop and implement new methods for selected and under-utilised populations of sheep and goats while conserving genetic variability

#### Work done

- Better formulation of the OCS problem.
- Evaluating the different estimates of genomic inbreeding
- Effect of using diffrenet GRM to manage genetic diversity



## The OCS problems as a Mixed Integer programming (MIP)

Optimise  $c \text{ and } \tilde{c}$ 

Minimise  $h(\mathbf{c})$ 

st: s'c = 0.5

 $\mathbf{d}'\mathbf{c} = 0.5$ 

 $c \ge u\tilde{C}$ 

 $c \leq \overline{u}\tilde{C}$ 

 $\frac{c'G_jc}{2} \le F_j^*, j = 1, p$ 

 $\tilde{\mathbf{c}}_i * (\tilde{\mathbf{c}}_i - 1) = 0, i = 1, n$ 

Include an extra variable to optimise  $\tilde{\mathbf{c}}$  which is integer 0,1

Make it continuous [0,1] and introduce Constraint  $\tilde{c}_i * (\tilde{c}_i - 1) = 0$ 

$$\mathcal{L}(\mathbf{c}, \tilde{\mathbf{c}}, \lambda_s, \lambda_d, \lambda_{\tilde{\mathbf{c}}}, \lambda_{\underline{u}}, \lambda_{\overline{u}}, \lambda_j) = h(\mathbf{c}) - \lambda_s(\mathbf{s}'\mathbf{c} - 0.5) - \lambda_d(\mathbf{d}'\mathbf{c} - 0.5) - \tilde{\mathbf{c}}'(\tilde{\mathbf{C}} - \mathbf{I})\lambda_{\tilde{\mathbf{c}}} - \lambda_{\underline{u}}'(\mathbf{c} - \underline{u}\tilde{\mathbf{C}}) + \lambda_{\overline{u}}'(\mathbf{c} - \overline{u}\tilde{\mathbf{C}}) + \lambda_{\overline{u}}'(\mathbf{c} - \overline{u}\tilde{\mathbf$$

Better formulation of OCS problem but solving still a hard problem



## A MIP OCS for maximising heterozygosity

**Optimise**  $ilde{c}_{i,j}$  mating status between male I and female j

Maximise  $\sum \tilde{c}_{i,j} * He_{i,j}$ 

st:  $\sum_{i} \tilde{c}_{i,j} = n_i \quad i = 1, m$   $\sum_{j} \tilde{c}_{i,j} = n_j \quad j = 1, f$   $\tilde{c}_{ij} * (\tilde{c}_{ij} - 1) = 0, i = 1, m; j = 1, f$ 

# The value of genomic relationship matrices for estimating smarter inbreeding

Genomic Inbreeding (from diagonal of GRM)

$$F_{L\&H} = \frac{SF_{NEJ} - \sum_{k=1}^{S} \left[1 - 2p_{k(0)}(1 - p_{k(0)})\right]}{S - \sum_{k=1}^{S} \left[1 - 2p_{k(0)}(1 - p_{k(0)})\right]} \qquad ] - \infty: 1]$$

$$F_{VR1} = \frac{\sum_{k=1}^{S} (x_k - 2p_{k(0)})^2}{2\sum_{k=1}^{S} p_{k(0)} (1 - p_{k(0)})} - 1 \qquad \qquad ] - 1 : \infty ]$$

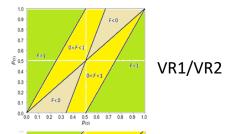
$$F_{YAN} = \frac{1}{S} \sum_{k=1}^{S} \frac{x_k^2 - (1 + 2p_{k(0)})x_{k_i} + 2p_{k(0)}^2}{2p_{k(0)}(1 - p_{k(0)})} \qquad \qquad ] - 1 : \infty ]$$



## The value of genomic relationship matrices for estimating inbreeding

Expected genomic Inbreeding from different GRM (based in change in allele frequencies)

F > 1> 100% initial diversity lost



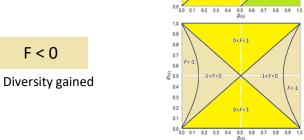


- Loss of variance when it's been gained
- Gain of variance when it's been lost





F < 0



Yang



- Losing more variance than the initial value
- Expect not gain in variance (in average)

- Loss/gain in variance in right direction
- Allow for gain in variance

T5.4 D5.4



## Patterns of $F_{L\&H}$ , $F_{VR1}$ , $F_{VR2}$ and $F_{YAN}$ – Cohort 6

#### SSC14 - Whole region fixed

t =

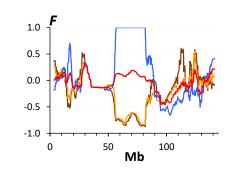
6

F<sub>L&</sub> —

F<sub>VR</sub> —

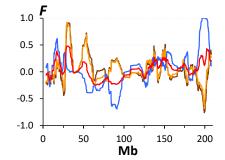
F<sub>VR</sub> —

N



- $F_{L\&H} = 1$   $\longrightarrow$  All variability lost
- $F_{VR1}$ ,  $F_{VR2} < 0 \implies$  Gain in variability
- $F_{YAN} > 0$   $\longrightarrow$  Some variability lost

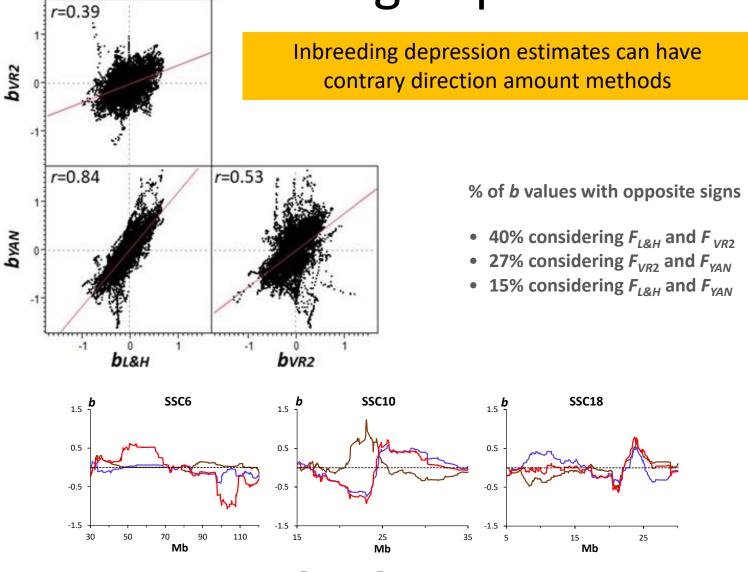
SSC13 - Region where homoz decreased



- $F_{L\&H} < 0$   $\Longrightarrow$  Gain in variability
- $F_{VR1}$ ,  $F_{VR2} > 0$   $\longrightarrow$  Some variability
- $F_{YAN} \sim 0$  lost



Inbreeding depression



## Effect of using these matrices in OCS



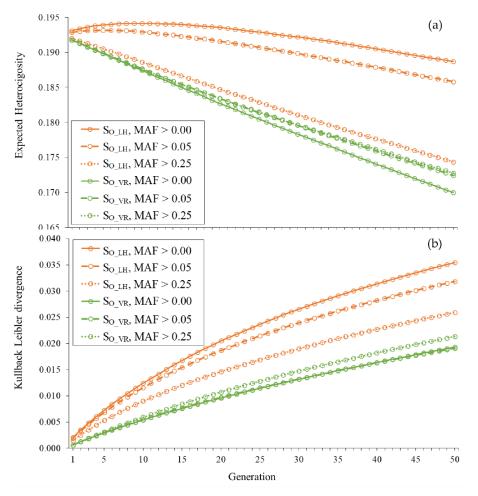


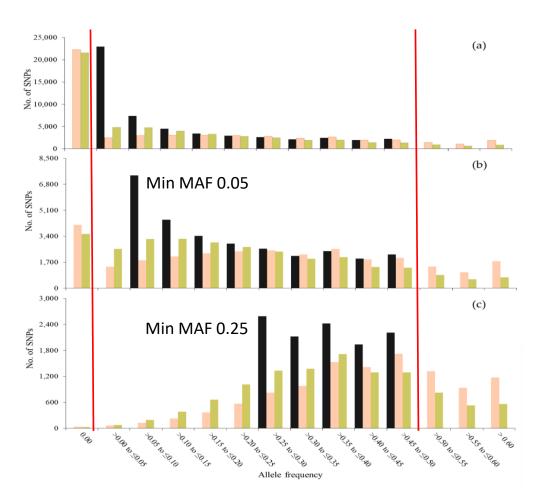
Figure 3. Expected heterozygosity (a) and Kullback–Leibler divergence (b) for unobserved loci across generations when contributions are optimized using Li and Horvitz ( $S_{O\_LH}$ ) and VanRaden ( $S_{O\_VR}$ ) coancestry matrices computed with SNPs with MAF > 0.00, MAF > 0.05 and MAF > 0.25 in a population of 100 individuals.

#### L&H

- retain more heterozygosity
- Greater deviation from initial freq



#### Change in frequency in observed SNP





#### G50. L&H

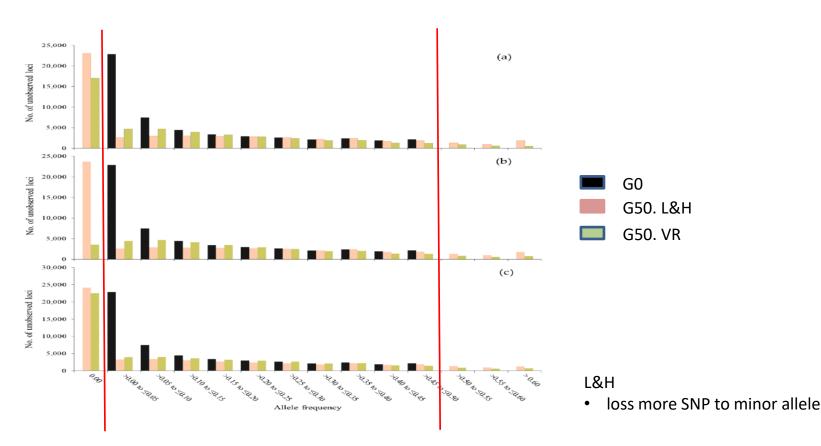
#### **G50. VR**

#### L&H

- moves freq towards 0.5
- loss more SNP to minor allele



#### Change in frequency in unobserved SNP



Choice of GRM in OCS depend of objective:

Increasing variability: L&H

Mantaining the original gene frequency: VR



## Ne

**Table 4.** Effective population size  $(N_e)$  across generations (t) when contributions are equalized  $(S_E)$  and when they are optimized using Li and Horvitz  $(S_{O\_LH})$  and VanRaden  $(S_{O\_VR})$  coancestry matrices in populations of different sizes (N).

|    | N = 100 |                   |                   | N = 20 |                   |                   |
|----|---------|-------------------|-------------------|--------|-------------------|-------------------|
| t  | $S_{E}$ | S <sub>O_LH</sub> | S <sub>O_VR</sub> | SE     | S <sub>O_LH</sub> | S <sub>O_VR</sub> |
| 1  | 188.21  | -111.90           | 195.55            | 36.92  | 42.27             | 40.40             |
| 5  | 199.07  | -855.78           | 197.46            | 36.78  | 41.24             | 34.31             |
| 10 | 191.56  | -5777.32          | 193.05            | 38.54  | 40.81             | 41.77             |
| 15 | 203.50  | 1855.71           | 194.54            | 36.65  | 45.41             | 43.18             |
| 20 | 202.62  | 1033.03           | 201.52            | 40.61  | 47.25             | 40.02             |
| 25 | 190.44  | 636.00            | 209.85            | 40.20  | 47.08             | 42.02             |
| 30 | 193.58  | 670.07            | 209.79            | 36.45  | 53.03             | 38.57             |
| 35 | 193.30  | 524.97            | 206.03            | 33.41  | 50.28             | 44.62             |
| 40 | 204.95  | 601.67            | 212.53            | 36.94  | 47.91             | 49.68             |
| 45 | 207.44  | 703.31            | 205.00            | 37.52  | 48.50             | 40.09             |
| 50 | 206.86  | 481.08            | 213.02            | 41.99  | 46.20             | 38.53             |

Ne several folds greater with L&H than VR With n=100

