

Farmers' breeding management practices: which pattern for different countries?

Vincent Thénard with collaboration of Julien Quénon and al.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

Introduction

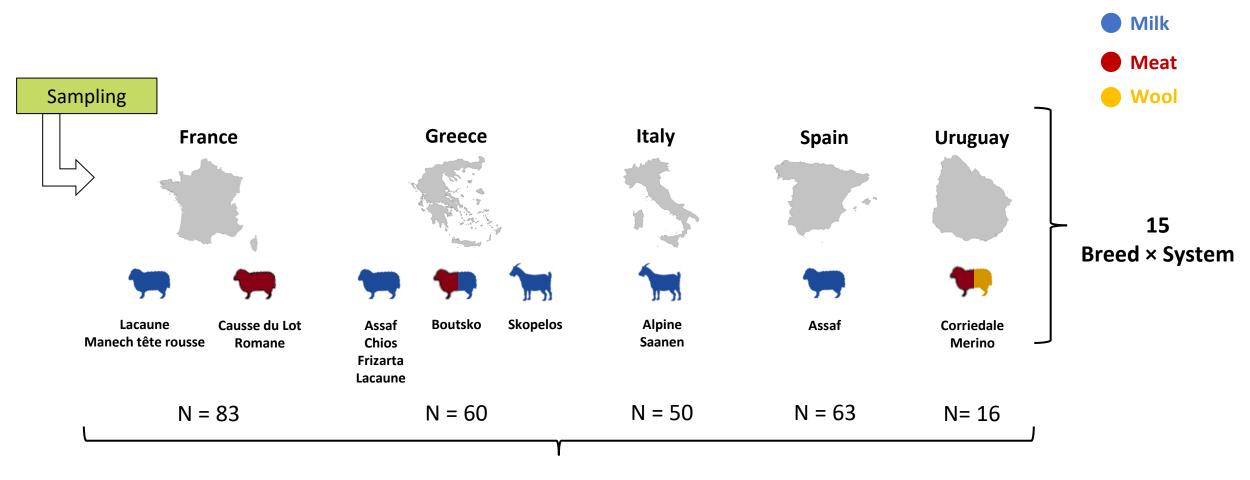
Small ruminant livestock are of socio-economic and environmental importance to many rural communities around the world (FAO, 2009)

their sustainability is a crucial issue (Joy et al., 2020; Leite et al., 2021)

- Choosing breeding goals adapted to such issue (Phocas et al., 2016), by selecting traits that enhance:
 - Resilience/robustness = buffer, adaptive and transformative capacity in a changing/uncertain context (Dumont et al., 2020)
 - Resistance to heat stress (Sejian et al., 2019; Sánchez-Molano et al., 2020)
 - Resistance to parasitism and diseases (Hine et al., 2022; Doeschl-Wilson et al., 2022)
 - Efficiency = production related to the use of the necessary resources
 - Feed intake (Amarilho-Silveira et al., 2022)
 - Land use (Hennessy et al., 2021)

Introduction

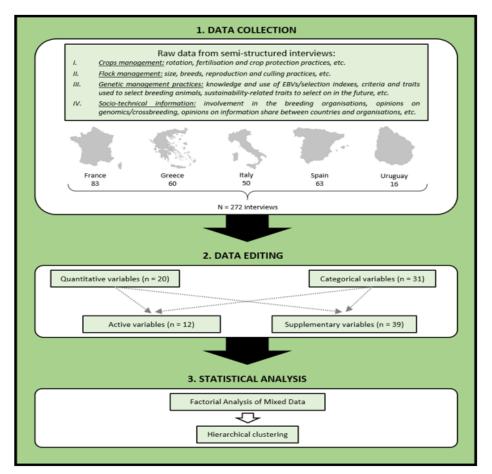
- SMARTER (SMAll RuminanTs breeding for Efficiency and Resilience) H2O2O project aims to redefine genetic selection criteria to increase the sustainability of the small ruminants sectors
- Adjusting breeding objectives to small ruminants farmers' expectations, actual breeding practices and views on sustainability (Perucho et al., 2019; Kosgey et al., 2006)



What criteria (genetic or not) do farmers/breeders use?

Which traits do they think are relevant to increase the sustainability of their farm?

Which diversity in SMARTER project?



To collect information on farmers' practices, we decided to conduct interviews with farmers and breeders.

Interviews about the farmers' practices

- to identify livestock selection management
- to understand farmers' choice

1. DATA COLLECTION

- 15 breeds sheep & goat
- Different types of system: milk production, meat production, wool production, dual-purpose
- Different local conditions: Extensive, semiintensive, intensive management

1. DATA COLLECTION

2. DATA EDITING

- Final dataset: 272 individuals described by 12 active (+ 29 supplementary) variables
- I. Crops management: Ø
- II. Flock management:
 - V1 Replacement rate (%)
 - V2 Percentage of artificial insemination used in the flock (%)
 - V3 Use of AI: Only natural mating / Only artificial insemination / Both AI and NM

1. DATA COLLECTION

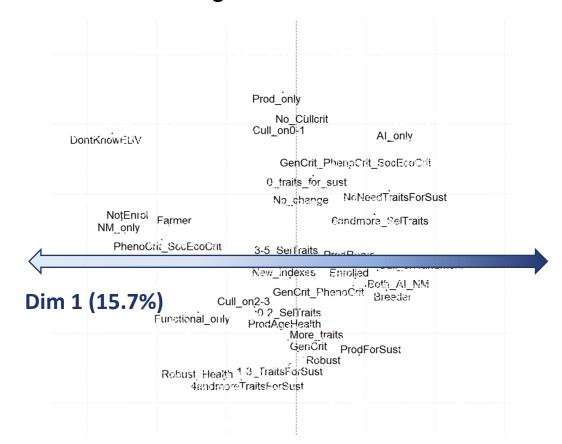
2. DATA EDITING

- Final dataset: 272 individuals described by 12 active (+ 29 supplementary) variables
- III. Genetic management practices:
 - V4 No. of culling criteria: 0 to 1 / 2 to 3 / 4 and more
 - V5 Culling criteria: No culling criteria / Production only / Functional traits only / Production & Reproduction / Production, Health & Age
 - V6 Type of criteria used to select animals: No genetic criteria / Genetic only / Genetic & Phenotypic / Genetic, Phenotypic & Socio-economic
 - V7 No. of selection traits used: 0 to 2 / 3 to 5 / 6 and more
 - V8 No. of traits to **7** sustainability: 0 / 1 to 3 / 4 and more
 - V9 New traits to 7 sustainability: No answer / No need / Production / Robustness / Robustness & Health

1. DATA COLLECTION

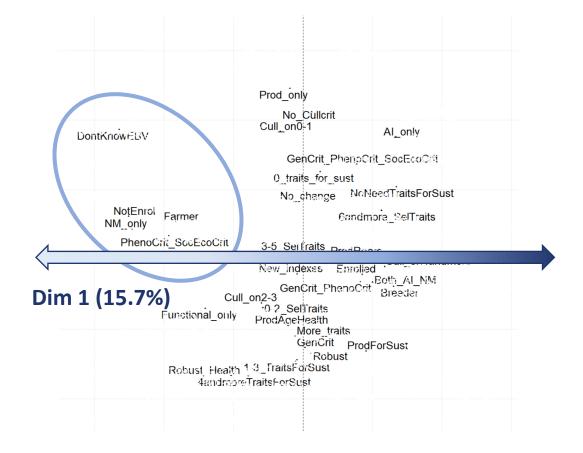
2. DATA EDITING

- Final dataset: 272 individuals described by 12 active (+ 29 supplementary) variables
- IV. Socio-technical information
 - V10 Change to make in selection indexes: No change / More traits / New indexes with different weighting
 - V11 Breeder status: Farmer using genetic progress / Breeder
 - V12 Enrollment in performance recording organisations: Enrolled / Not enrolled


1. DATA COLLECTION	2. DATA EDITING	3. MULTIVARIATE ANALYSIS

- Factorial analysis of mixed data (FAMD): analysing pattern of relationships described by both quantitative and categorical data
- Hierarchical clustering: discriminating and characterising groups of small ruminants' farmers with contrasted breeding practices

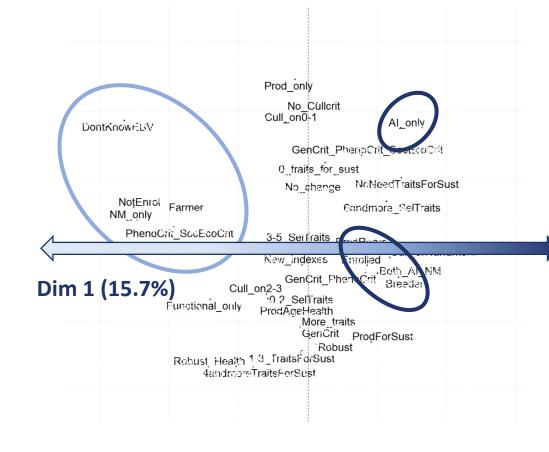
Axis 1 determined by the level of integration of small ruminants' farmers in the sociotechnical system of breed selection and performance recording



Axis 1 determined by the level of integration of small ruminants' farmers in the sociotechnical system of breed selection and performance recording

- Farmers
- Don't know EBVs
- Not enrolled in performance controlling organisations
- Using natural mating only
- Don't use genetic criteria to buy breeding animals

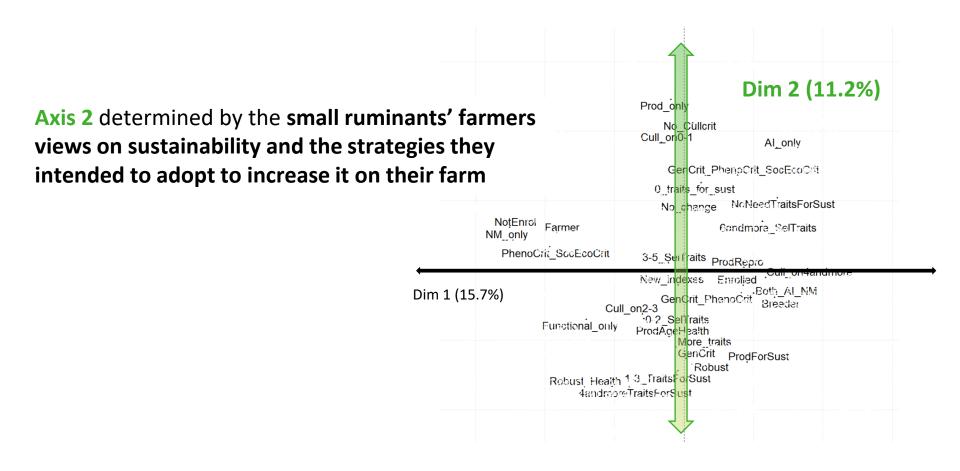
Low level of integration in the sociotechnical system of breed selection and performance recording organisations



Axis 1 determined by the level of integration of small ruminants' farmers in the sociotechnical system of breed selection and performance recording

- Farmers
- Don't know EBVs
- Not enrolled in performance controlling organisations
- Using natural mating only
- Don't use genetic criteria to buy breeding animals

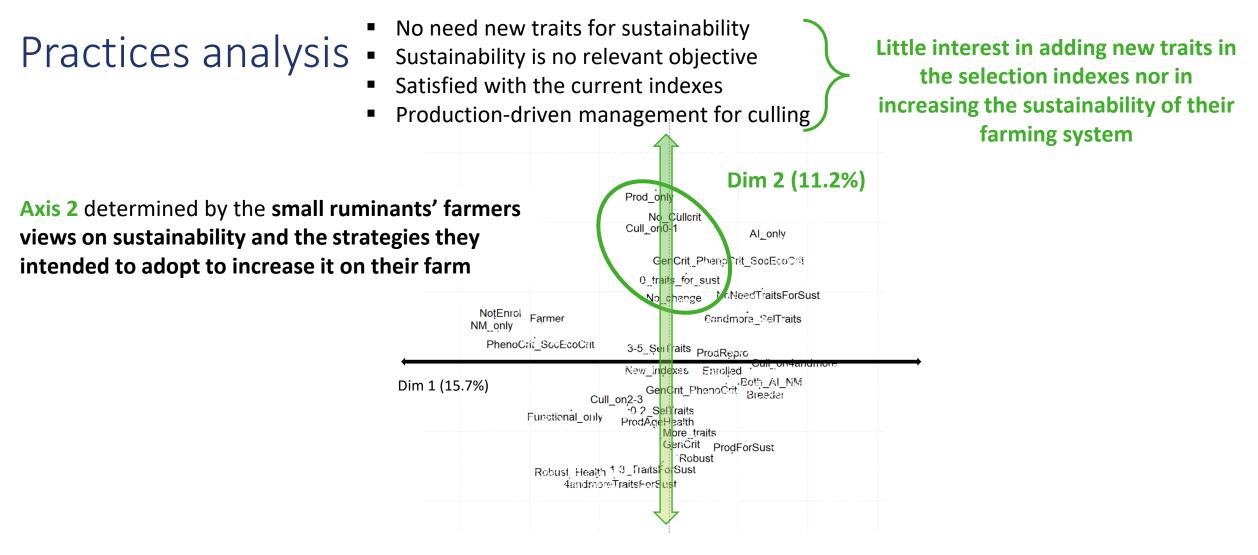
Low level of integration in the sociotechnical system of breed selection and performance recording organisations



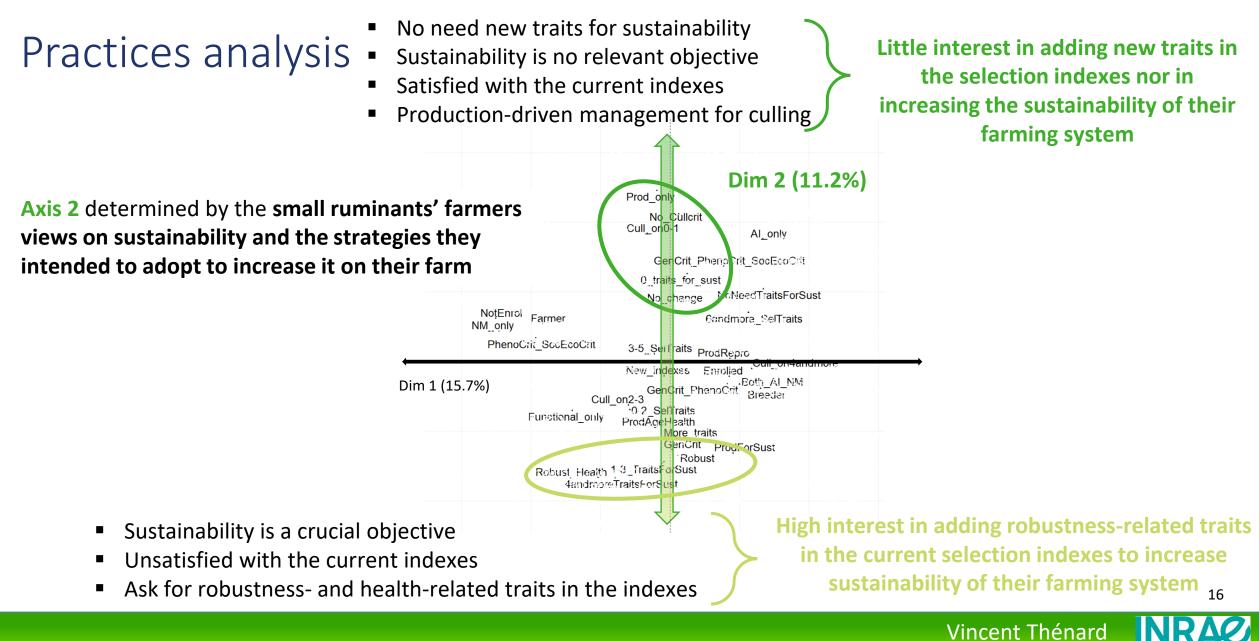
- Breeders
- Enrolled in performance controlling organisations
- Using artificial insemination only

High level of integration in the sociotechnical system of breed selection and performance recording organisations

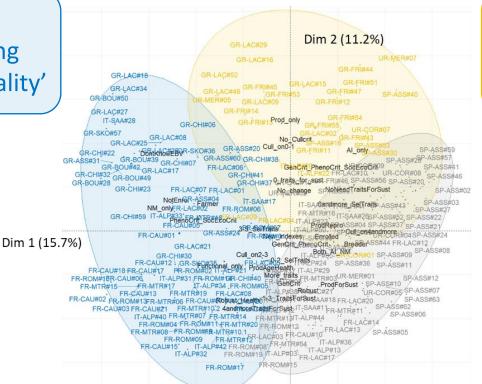
13



14



Vincent Thénard



Three breeding managements

Little interest in adding robustness traits in the indexes to increase sustainability

Group 1 (n = 93) 'Non genetic farmers seeking robustness and multifunctionality'

Low level of integration in the sociotechnical system

High interest in adding robustness traits in the indexes to increase sustainability Group 2 (n = 34) 'Genetic farmers seeking production efficiency'

High level of integration in the sociotechnical system

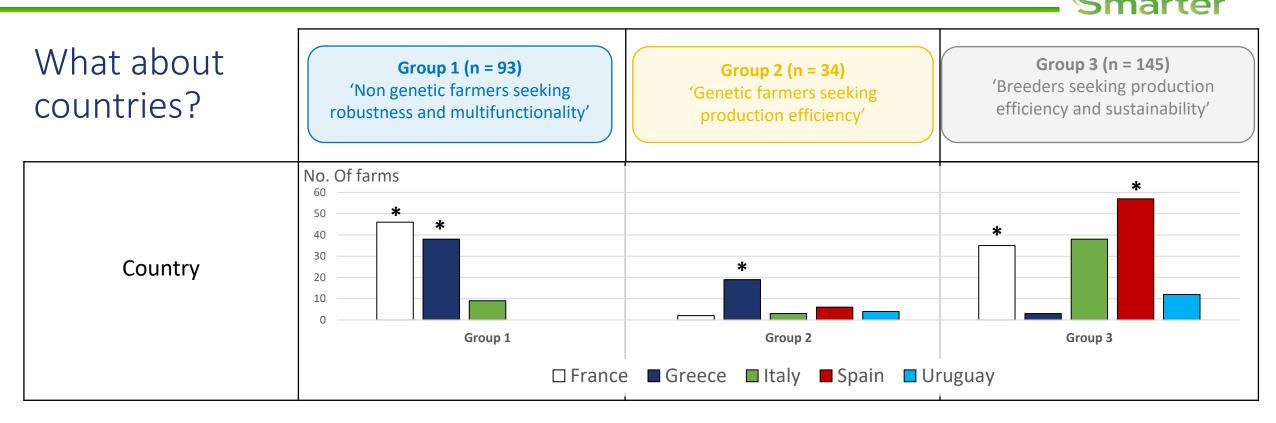
Group 3 (n = 145) 'Breeders seeking production efficiency and sustainability'

17

What about genetics?	Group 1 (n = 93)	Group 2 (n = 34)	Group 3 (n = 145)
	'Non genetic farmers seeking	'Genetic farmers seeking	'Breeders seeking production
	robustness and multifunctionality'	production efficiency'	efficiency and sustainability'
Views on sustainability	Don't know EBVs Current in No. Of farms 0 Current in Conversion C	dexes meet sustainability Need new f Group 2	Group 3

- Interest in the issue of sustainability varied among farmers
- Confidence in genetic tools and their relevance to increasing resilience varied among farmers

to what extent SMARTER objectives fit farmers' expectations (vs. breeders')?


18

What about Livestock systems?	Group 1 (n = 93) 'Non genetic farmers seeking robustness and multifunctionality'	Group 2 (n = 34) 'Genetic farmers seeking production efficiency'	Group 3 (n = 145) 'Breeders seeking production efficiency and sustainability'
Livestock farming system	No. Of farms	Group 2 Dairy sheep 💏 Meat sheep 死 V	Group 3 Wool-meat sheep

No overlap between groups and livestock systems: breeding management strategies and views on sustainability do not seem to depend on livestock species/farming system

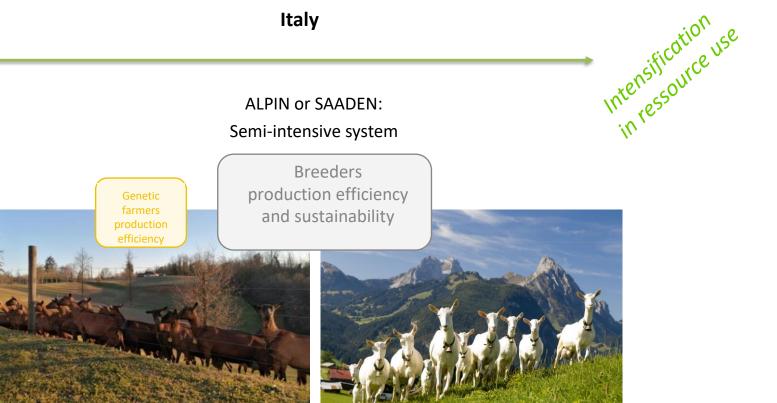
Overlap between groups and countries: socio-technical elements could explain the differences between the groups

- Level of structuring of the breeding selection system
- Level of dissemination of technologies and knowledge on genetics (e.g. AI, indexes, genomics)
- Shared knowledge among farmers on specific topics (e.g. sustainability/robustness/resilience)

Discussion

Goat production:

Greece

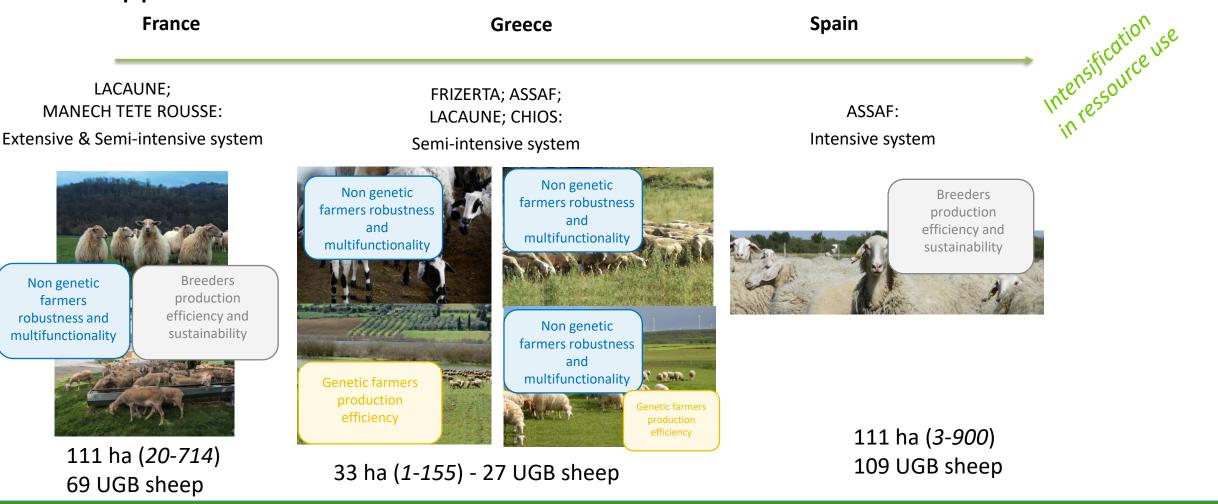

Italy

ALPIN or SAADEN:

SKOPELOS: Extensive system

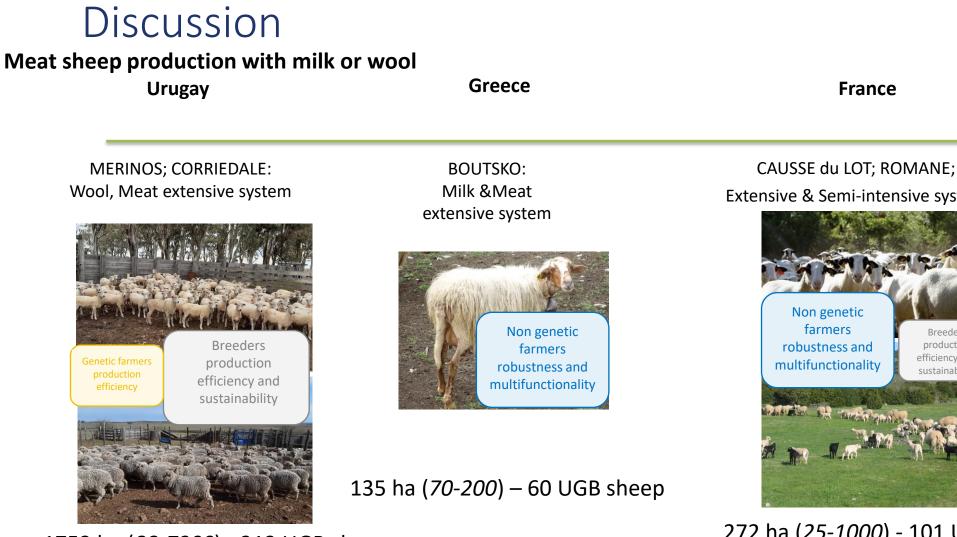
Non genetic farmers robustness and multifunctionality

231.7 ha (*27-256*) 38.2 UGB goat

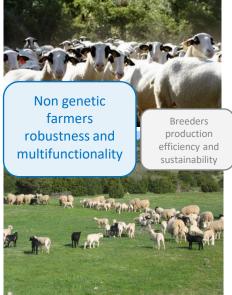


16 ha (*3-90*) 12 UGB goat 10.1 ha (1-46) 13.3 UGB goat

Discussion


Milk sheep production

22



Intensification use in ressource use

1753 ha (88-7300) - 313 UGB sheep

Extensive & Semi-intensive system

272 ha (25-1000) - 101 UGB sheep

Take-home messages

- Not all farmers have the same level of genetic knowledge and use of genetic tools
- There is no significant overlap between breeding management and breeds/farming systems/countries.
- The sustainability is a major concern, but the levers are different: health and robustness, productivity, multifunctionality.
- The Sociotechnical system are fundamental to understand farmers preferences
- How to assess if the goals of the SMARTER project really correspond to the farmers' expectations and their need to adapt their breeding system: breeder/farmer *iatus*
- "Genetic progress will be difficult to maintain as it is because climate change will force farmers to adapt rather than relying solely on animal adaptation or selection"

First results

Resilience and efficiency traits impact system performances and modify farmers' breeding choices

 How farmers can increase resilience of small ruminants farming systems: three management strategies across countries?
 How social acceptance and economic, social and environmental benefits of breeding strategies that use R&E traits and genomic tools to achieve balanced breeding objectives?

Increasing resilience of small ruminants farming systems: three management strategies across countries

<u>J. Quénon</u>¹, G. Arsenos², G. Bailo³, R. Baptista⁴, I. De Barbieri⁴, G. Bruni³, F. Freire⁵, A. Theodoridis², S. Vouraki² and V. Thénard¹ 73rd EAAP Annual Meeting – Porto (POR)

Acknowledgments



Sotiria Alexandros Theodoridis Vouraki

Georgios Arsenos

Rebeca Ignacio Baptista de Barbieri

Guido Giovanni Bruni Bailo

INRAO

Vincent Thénard

Fernando Freire

Juben Jimenez

Julien Quénon

Julien Quénon – 73rd EAAP Annual Meeting – Porto (POR)

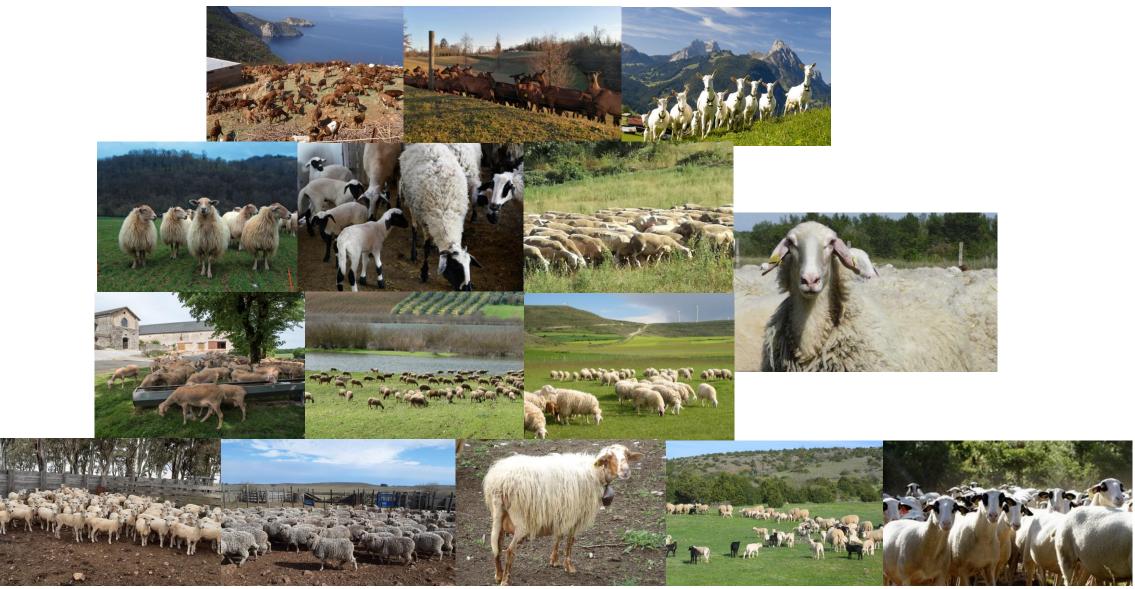
Vincent Thénard

Nina

Usai

SMARTER PARTNERS

Thank you for your attention


www.smarterproject.eu

Vincent Thénard

INRAO

>	1. DATA COLLECTION	2. DATA EDITING	3. MULTIVARIATE ANALYSIS

Itw section	Name of the variable	Definition	Type of variable	Use of the variable in the FAMD	Details
2.LIVESTOCK	Replacement	Replacement rate	Quantitative	Active	
2.LIVESTOCK	PercOfAl	% of the flock on which AI is used	Quantitative	Active	
2.LIVESTOCK	UseOfAl	Use of AI or natural mating	Categorical	Active	Al only / NM only / Both
2.LIVESTOCK	BreederStatus	Status of the farmer	Categorical	Active	Breeder/Farmer
2.LIVESTOCK	PerfControl	Enrollment in performance recording organisation	Categorical	Active	Enrolled/ NotEnrol
2.LIVESTOCK	NbCullCrit	No. Of culling criteria used	Quantitative	Active	

1. DA	TA COLLECTION	2. DATA ED	ITING	G 3. MULTIVARIATE A	
Itw section	Name of the variable	Definition	Type of variable	Use of the variable in the FAMD	Details
3.TRAITS & INDEXES	CritForSelec	Criteria to select reproductive animals	Categorical	Active	Genetical/Phenotype/Other
3.TRAITS & INDEXES	NbSelTraits	Number of traits used to select	Quantitative	Active	Med = 4 ; Min = 0; Max = 10
3.TRAITS & INDEXES	NbTraitsForSust	Number of traits cited as potentially increasing the resilience of the farm	Quantitative	Active	Med = 0 ; Min = 0; Max = 8
3.TRAITS & INDEXES	TraitsForSust	Traits cited as increasing the resilience of the farm	Categorical	Active	Ø / Production / Robustness / Don't know EBV
3.TRAITS & INDEXES	ChangeIndex	Would the farmer like a new index?	Categorical	Active	More traits / New indexes / No change
3.TRAITS & INDEXES	BuyMales	Does the farmer buy males?	Categorical	Active	No / Yes with/without EBV

AQ

1. DAT/	A COLLECTION	2. DATA	EDITING	3. MULTIVARIA	TE ANALYSIS
Itw section	Name of the variable	Definition	Type of variable	Use of the variable in the FAMD	Details
1.CROPS	UAA	Utilized Agricultural Area (ha)	Quantitative	Supplementary	
1.CROPS	PercMeadGrass	% of meadows + grassland in UAA	Quantitative	Supplementary	
1.CROPS	FertiPractices	Fertilization practices	Categorical	Supplementary	Mineral/Organic/Both/N one
1.CROPS	PercSurfPesti	% of UAA on which pesticides are used	Quantitative	Supplementary	
2.LIVESTOCK	UGBSmallRum	Flock size (UGB)	Quantitative	Supplementary	
4. BREEDING ORGANISATION	LimGenProgress	What limits genetical progress?	Categorical	Supplementary	Nothing / Organisation / Data / Indivdual /
4. BREEDING ORGANISATION	GenomicsDev	How do you consider genomics development?	Categorical	Supplementary	Want to be in / Not a priority
4. BREEDING ORGANISATION	Crossbreeding	Do you use crossbreeding?	Categorical	Supplementary	Yes / No

INK

AQ

Results

Group 1 (n = 93): 'Non-genetic farmers seeking robustness and multifunctionality'

- Not enrolled in performance recording org.
- Less knowledge of genetics
- Less use of the tools of genetic progress (e.g. indexes, AI).
- Selection of animals on non-genetic traits and culled on functional traits.
- Mostly French and Greek meat sheep farmers
- Smaller flocks
- Multiple-breeds flocks
- Lower replacement rate
- Higher % of meadows and grassland in UAA.

Results

Group 2 (n = 34): 'Genetic farmers seeking production efficiency'

- Production-driven flock management
- Mostly Greek dairy sheep farmers
- Low % of meadows/grassland in the UAA
- Low use of pesticides
- Selecting on production traits to increase sustainability of their farming system.

34

Results

Group 3 (n = 145): 'Breeders seeking production efficiency and sustainability'

- Mostly Spain and Italian breeders + Uruguayan farmers
- Large flocks
- Low % of meadows/grassland
- High use of pesticides
- Demanding flock configuration practices:
 - higher use of artificial insemination
 - higher replacement rate
- Strong knowledge in genetics
- Enrolled in performance control recording organisations
- Satisfied with the current indexes to ensure the sustainability of their system

Results	Group 1 (n = 93) 'Non genetic farmers seeking robustness and multifunctionality'	Group 2 (n = 34) 'Genetic farmers seeking production efficiency'	Group 3 (n = 145) 'Breeders seeking production efficiency and sustainability'
Flock size (LSU)	47 ^a	51 a	96 ^b
Grassland in UAA (%)	0.59 ^a	0.28 ^b	0.36 ^b
Use of pesticides (% of UAA)	0.59 a	0.09 ^b	0.30 ^C

% of AI used <i>(%)</i>	0.06 ^{a}	0.62 ^b	0.58 ^b
Replacement rate (%)	0.23 ^a	0.09 ^b	0.36 ^C
No. of breeds in the flock	1.4 a	1.1 ^b	1.1 ^b

