

WP1 – Task 1 Phenotypes related to Feed Efficiency in Small Ruminants

SMARTER Final meeting

22nd May 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

Estimates of **feed efficiency** for selection purposes require the acquisition of **individual intake** records

Expensive ... Time consuming ... Only possible on experimental farms

Objectives

Defining possible proxies

Testing them to quantify the quality of prediction

Applying them on commercial farms

Investigation only in experimental farms,

with total individual records of feed intake

Meat sheep

Dairy sheep Spain

Uruguay

France

Smarter

40 Assaf ewes

854 Merino/ 237 Dohne/ 290 Corriedale

277 Romane

Feed Efficiency traits to predict

Residual Feed Intake RFI Feed Conversion Ratio FCR

Feed Intake FI

Variety of approaches :

- 1- Relationships between FE traits and proxies : correlations (FE_{measured} & proxies)
- 2- Prediction of FE from proxies :
- 3- Integration of different groups of proxies :

correlations (FE predicted & FE_{measured}) with or without cross-validations

Smarter

correlations (FE_{measured} & proxies) correlations (FE_{predicted} & FE_{measured}) without cross-validations

(Maximum value)

		RFI	FCR	FI
	Fatty acids	0.48	0.70	
	in milk	NS	0.82	
	Backfat thickness	0.09	0.07	
	GHG (CH ₄ , CO ₂ , O ₂)	0.28	0.35	
	PCA (MW, ADG,GHG)			0.82
	Backfat thickness	0.02	0.06	
	Microbiota 16S	0.07	0.40	0.59
	Metabolomics plasma	0.10	-	0.20
	NIRS faeces	0.01	0.15	0.19
	¹⁵ N in plasma	0	0.67	-

2 types of integration (mixOmics)

P-integration (mint.sPLSR)

N-integration (block.sPLSR)

© adapted from Lê Cao & Welham

Integrate different **studies** (years)

Integrate different variables (omics)

P-Integration with cross-validation – single omics predictions

Integration with a new ensemble strategy

Cross-validation: training (60%), validation (30%) and testing sets (10%)

P-Integration with cross-validation – single omics predictions

Cross-validation: training (60%), validation (30%), testing (10%) - Repeated 100 times

	Farm records	Blo	od	Rumen fluid				
	Mint.sPLSR							
	Fixed effects & covariates	Genetics	Metabo- Iomics	LFA	VFA	Microbiota 16S		
Feed Intake	0.85 (0.04)	0.54 (0.11)	0.51 (0.12)	0.39 (0.12)	0.42 (0.13)	0.46 (0.14)		
Residual Feed Intake	0.34 (0.11)	0.46 (0.13)	0.33 (0.13)	0.20 (0.15)	0.08 (0.17)	0.23 (0.14)		

Average pearson correlations (and standard deviation) between predictions and real values

2 types of integration (mixOmics)

P-integration (mint.sPLSR)

N-integration (block.sPLSR)

Integrate different studies (year)

Integrate different variables

What about NP-integration ?

As mixOmics function is not working, another ensemble strategy is investigated !

Integration with a new ensemble strategy

Cross-validation: training (60%), validation (30%) and testing sets (10%)

Integration with a new ensemble strategy

Cross-validation: training (60%), validation (30%) and testing sets (10%)

	Farm records	Blo	od		Rumen fluid		
	Mint.sPLSR						Ensemble integration
	Fixed effects & covariates	Genetics	Metabo- Iomics	LFA	VFA	Microbiota 16S	All
Feed Intake	0.85 (0.04)	0.54 (0.11)	0.51 (0.12)	0.39 (0.12)	0.42 (0.13)	0.46 (0.14)	0.83 (0.05)
Residual Feed Intake	0.34 (0.11)	0.46 (0.13)	0.33 (0.13)	0.20 (0.15)	0.08 (0.17)	0.23	0.55 (0.11)

Average pearson correlations (and standard deviation) between predictions and real values

Data contributions in the ensemble model

Relative contributions = relative weight while averaging predictions

	Fixed effects & covariates	Genetics	Metabolomics	LFA	VFA	Microbiota 16S
Feed intake	40.9%	17.4%	14.3%	7.8%	9.3%	10.4%
Residual feed intake	20.3%	39.9%	21.1%	5.7%	3.3%	9.7%

- Host genetics: high contribution (partly due to the divergent lines)
- Rumen: not the best sampling location to predict feed efficiency :
 - blood metabolomics performed better !

Take-home messages

- Feed Intake is easier to predict than FE traits particularly RFI
- Even if the rumen is a key to ruminant nutrition, rumen data are not good predictors (moreover, difficult to access)
 Blood (or milk?) metabolome seemed to predicted better
- GHG and faeces still need to be evaluated with cross-validation models
- "Omics by omics" RFI prediction is not sufficient: different groups of traits must be integrated to obtain a suitable prediction

Merci de votre attention

