
 SMARTER – Deliverable D1.1 
 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 772787 

  

 

SMARTER 
SMAll RuminanTs breeding for Efficiency and Resilience 

Research and Innovation action: H2020 – 772787 

Call: H2020-SFS-2017-2 

Type of action: Research and Innovation Action (RIA) 

Work programme topic: SFS-15-2016-2017 

Duration of the project: 01 November 2018 – 30 June 2023 
 
 
 
 

Report of novel phenotypes related to feed efficiency 
 

Flavie Tortereau1, Christel Marie-Etancelin1, Hélène Larroque1, Coralie Machefert1, Isabelle Palhière1, Florian 

Mosnier2, Quentin Le Graverand1, Florian Touitou1, Arnaud Delpeuch2, Sarah Teixeira2, Marjorie Chassier2, 

Gilles Laggrifoul2, Georgios Arsenos3, Sotiria Vouraki3, Vanessa Fotiadou3, Jette Jackobsen4, Sebastian 

Mucha5, Ignacio de Barbieri6, Gabriel Ciappesoni6 Beatriz Gutiérrez-Gil7, Gonzalo Hervás7, Pablo G. Toral7, 

Aroa Suárez-Vega7, Pilar de Frutos7, Juan-José Arranz7 

 

1- INRAE UMR GenPhySE 

2- Idele 

3- AUTH 

4- NSG 

5- SRUC 

6- INIA-Uruguay 

7- UNILEON 

* Deliverable leader – Contact: Flavie.tortereau@inrae.fr 

 

DELIVERABLE D1.1 
Workpackage N°1 

Due date: M36 

Actual date: 27/08/2023 (previous submission 05/04/2022) 

Dissemination level: Public 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  1 | 

123 

 

 

About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

 SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges.  

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency.  
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Abbreviations: 

ACF: Automated Concentrate Feeder 

ADFI: Average Daily Feed Intake 

ADG: Average Daily Gain 

AFF: Automated Forage Feeder 

BCS: Body Condition Score  

BFT: BackFat Thickness 

BW: Body Weight 

DEG: Differentially Expressed Gene 

E-BW: Body weight at the end of the control period 

FC: Fat Content 

FCR: Feed Conversion Ratio 

FE: Feed Efficiency 

FI: Feed Intake 

MD: Muscle Depth 

MIR: Mid infra-red 

MY: Milk Yield 

NEICMR: Net Energy Intake Corrected for Milk Ratio 

NIRS: Next infra-red spectra 

NMR: Nuclear Magnetic Resonance 

OTUs: Operational Taxonomic Units 

PC: Protein Content 

PLS-DA: Partial Least Squares – Discriminant analysis 

RFI: Residual Feed Intake 

VIP: Variable Importance in Projection 

 

1 Summary 

Feed efficiency (FE) is a key trait to improve in small ruminants, from an environmental to an economic 

point of view. Different criteria exist to work on FE, the more popular being feed conversion ratio (FCR) 

and residual feed intake (RFI) that are considered the reference/gold standard. However, both require 

individual production (milk or body weight) and feed intake (FI) to be recorded. Different tools exist to 

record individual FI, but most of them cannot be used in commercial farms either because they do not 

comply with animal management (e.g., individual crates) or because they are too expensive (automatic 

feeders or individual troughs). Therefore, the objective of the presented work was to analyse the 

prediction performances of different proxies for FI and/or FE. These proxies have been defined at 

different levels:  
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- zootechnical traits that are routinely recorded (body weights, muscle depth and backfat 

thickness measured with ultrasound, milk yield, milk fat and protein contents, body condition 

scores, wool traits)  

- zootechnical traits that are currently not routinely recorded (greenhouse gas emissions, 

morphological traits (shoulder height, chest depth and width)). 

-  Milk traits (untargeted metabolome with LC-MS, milk fatty acids composition with gas 

chromatography, milk fine composition with MIR spectra, milk total protein and lactose 

contents) 

- Blood traits (untargeted approach with NMR on plasma, targeted metabolites contents (beta-

hydroxybutrate, non-esterified fatty acids, total proteins and hormones), plasmatic 15N natural 

abundancies) 

- Faecal traits (NIR spectra on faeces) 

- Ruminal traits (pH, ammonia content, microbiota description, untargeted metabolome with 

NMR, volatile fatty acids content) 

- Milk molecular traits (transcriptomics and epigenetic marks in milk somatic cells) 

A general table gathering all the considered proxies is given in a first part, along with the main 

conclusions. Those proxies have been evaluated in experimental designs as well as in commercial 

farms. Most of the experimental facilities could record individual FI so that reference FE criteria could 

be estimated. In commercial dairy farms, forage intake at the pen level was sometimes recorded, and 

concentrate intake was individually recorded in the milking parlour in some dairy farms. In meat sheep 

farms, no feed intake was recorded at the individual or the pen levels.  

A total of 5,917 dairy sheep (from 7 breeds), 7,469 dairy goats (from 3 breeds), and 22,146 meat sheep 

(from 8 breeds) have been phenotyped to carry out this work. Reference FE criteria (i.e., estimated 

from individual FI) were estimated on 88 dairy sheep and 2,287 meat sheep. In dairy goats, concentrate 

intake was recorded in 1,289 individuals, but forage intake was not registered.  

Numbers of individuals per partner are described in tables A, B and C for dairy sheep, dairy goats and 

meat sheep, respectively, and details per breed are provided. 

We highlighted, at least in dairy sheep, that feed intake and milk yield were key parameters in the 

calculation of feed efficiency ratios: taking an average value for the individuals implies major re-

ranking. Predicting feed intake can thus be an alternative to the direct prediction of feed efficiency. In 

meat sheep, the application of eigenvectors from principal component analysis of production traits 

(i.e., body weight, growth) and gas emissions turned to be helpful in the prediction of feed intake. Feed 

intake is predicted with higher accuracies than feed efficiency criteria. 

Ruminal proxies, in univariate and multivariate analyses did not reach good prediction performances 

for feed efficiency. Multivariate analyses including proxies from different tissues were performed and 

highlighted that host traits return better predictions for feed intake, and to a less extent of feed 

efficiency than ruminal traits. The different proxies significantly associated with feed efficiency in small 

ruminants, included plasma and milk metabolites, milk fatty acids and milk somatic cell methylation 

marks and transcriptomic profile. The more promising proxies for feed efficiency that can be proposed 

to be recorded on a large scale are the ones measured in blood (plasma metabolites such as citrate 
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and amino acids) and in milk (fatty acids composition). The inclusion of fixed effects in the prediction 

models is of high importance in order to avoid any spurious correlations that might influence the 

prediction accuracy. 

The next step is to perform genetic and genomic analyses (more than 6,200 individuals being 

genotyped on low to medium density SNP chips) of these considered proxies and analyse their genetic 

correlation with feed efficiency criteria. 

 

2 Introduction 

The overall aim of work package 1 is to identify novel traits to improve resource use efficiency. Feed 

efficiency (FE) is the ability of an animal to transform its feed into food edible by humans. FE can be 

assessed using indicators such as FCR (or its inverse commonly named feed efficiency) and RFI. 

However, these indicators require feed intake to be recorded. Different tools exist to record individual 

feed intake. Individuals can be placed in individual crates, but this does not comply with the gregarious 

behaviour of small ruminants, and it requires a lot of workloads, so they are only usable in 

experimental facilities. Automated feeders have been developed and mainly rely on electronic 

identification: one device, located in a given pen, can be used by several individuals. Although 

automatic feeders can be routinely used in experimental farms, very few are available in European 

commercial farms – mainly because of the cost. 

Therefore, the objective is to identify proxies for feed intake and/or feed efficiency that can be easily 

and routinely measured on commercial farms to make it possible to include feed efficiency in selection 

indices. Proxies are mainly looked for in the main biological processes known to be influencing feed 

efficiency. In growing animals, it has been proposed that feed efficiency can be influenced by feed 

intake, digestion, host metabolism, activity level, and thermoregulation (Herd et al., 2004). Regarding 

small dairy ruminants, feed efficiency is mainly studied in lactating ewes, and the main biological basis 

of this trait is less documented than in growing animals. Nevertheless, feed intake, digestion, and host 

metabolism are also key factors influencing feed efficiency in lactating females, to which we can add 

body reserves variations along the production cycle. 

In this report, part of proxies for feed intake and feed efficiency were considered at the level of the 

digestion process, which in ruminants, mainly takes place in the rumen. Ruminal microbiota, ruminal 

metabolomics, and methane emissions were analysed. At the animal level, different levels of proxies 

were considered:   

- zootechnical traits that are routinely recorded (body weights, muscle depth and backfat 

thickness measured with ultrasound, milk yield, milk fat and protein contents, body condition 

scores, wool traits)  

- zootechnical traits that are currently not routinely recorded (greenhouse gas emissions, 

morphological traits (shoulder height, chest depth and width)). 

-  Milk traits (untargeted metabolome with NMR, milk fatty acids composition with gas 

chromatography, milk fine composition with MIR spectra, milk total protein and lactose 

contents) 
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- Blood traits (untargeted approach with NMR on plasma, targeted metabolites contents (beta-

hydroxybutrate, non-esterified fatty acids, total proteins and hormones), plasmatic 15N natural 

abundancies) 

- Faecal traits (NIR spectra on faeces) 

- Ruminal traits (pH, ammonia content, microbiota description, untargeted metabolome with 

NMR, volatile fatty acids content) 

- Milk molecular traits (transcriptomics and epigenetic marks in milk somatic cells) 

 

A general table gathering all the records per involved partner is provided for each production (dairy 

sheep (Table A), dairy goats (Table B) and meat sheep (Table C)), along with a description of deviations 

and delays from the DoA document. 

Then, Table D summarises the main results, with the main conclusions about the ability to predict feed 

intake or feed efficiency, for all the small ruminant production. 

Then, the different designs and methodologies are described for each small ruminant production (dairy 

sheep, dairy goats and meat sheep), followed by the results in details.  

3 Datasets and deviations or delays from DoA 

The three following tables (Table A, Table B and Table C) describe the dataset used for this D1.1, for 

each type of production (dairy sheep, dairy goats and meat sheep, respectively). In each table, the first 

lines refer to Table 1 of DoA which summarizes all the breeds and numbers of individuals per partner 

involved in SMARTER, not only for WP1. Then numbers of individuals (in brackets) and phenotypes 

considered in D1.1 are given for each trait. 

The results included in this deliverable imply, in a fundamental way, the results of Task 1.1 and Task 

1.2. These tasks are based on an intensive sampling of different small ruminant experimental (Task 

1.1) and commercial (Task 1.2) populations. Since these species follow a seasonal reproduction pro-

cess, one of the intensive sampling stages occurs from the winter and spring seasons. This period co-

incided with the COVID19 lockdown in Europe (from mid-March to June 2020), and it was impossible 

to sample the animals during this period.  

The affected partners were:  

• INRAE with three experimental populations, two sheep: Romane experimental population, 

Lacaune experimental population, and the Alpine goat experimental population;  

• UNILEON, where sampling was affected by a considerable delay in collecting and analyzing 

samples in the ASSAF experimental population;  

• NSG, there was a delay in collecting methane emission samples in the Norwegian White ani-

mals.  

• INIA-UY, there have been slight delays in the sampling of limited scope.  
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The COVID lockdown has also affected this task focusing on sampling in commercial farms. During the 

lockdown, the technicians have not been able to visit commercial farms. An important part of this task 

focused on the technicians of the different breeders' associations to the commercial herds. As these 

visits could not occur during the lockdown periods, the data for this reproductive season has been 

considerably reduced or lost. In these cases, the sampling period for a complete reproductive season 

has been lost, equivalent to twelve months in those animals that follow the management pattern of 

one lambing per year. This fact has delayed the task considerably since the samples were collected 

about six months later.  

Several mitigation measures have been put in place, including sampling animals in the following 

reproductive cycle (delay in experiments). In the case of commercial populations, where possible, 

sampling size has been increased in the next reproductive cycles to compensate for the lower number 

of data recorded during the lockdown. In any case, there is a delay in the analysis of certain 

experiments that have made it necessary to request an extension of the project. 

 

3.1 Dairy sheep 

 

Table A: number of records collected per partner for Dairy Sheep, the number of distinct individuals is 

given in brackets.  

Group of traits Trait France- INRAE Spain - 
UNILEON 

Greece - AUTH France Races 
de France 

Breeds in DoA – 
Table 1 

all Lacaune 
(divergent 
lines) 

Assaf 
(divergent 
lines) 

Lacaune, Assaf, 
Frizarta, Chios 

Lacaune, 
Manech Tête 
Rousse, Basco-
Béarnaise 

Numbers of 
individuals in 
DoA – Table 1 

all 700 
phenotyped 
and 
genotyped 

48 
phenotyped 
and 
genotyped 

48 phenotyped 
and genotyped 

20,000 
phenotyped 
and 10,000 
genotyped 

Breeds in D1.1 all Lacaune 
(divergent 
lines) 

Assaf 
(divergent 
lines) 

Lacaune, Assaf, 
Frizarta, Chios 

Lacaune, 
Manech Tête 
Rousse, 
Manech Tête 
Noire and 
Basco-
Béarnaise 

Zootechnical  Body weights  177 
(54) 

80 
(40) 

300 
(30 ewes; 8 
Chios, 8 
Frizarta, 7 
Lacaune, 7 
Assaf) 

 

Zootechnical  Muscle Depth 
(ultrasound) 

  300 
(30 ewes; 8 
Chios, 8 
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Group of traits Trait France- INRAE Spain - 
UNILEON 

Greece - AUTH France Races 
de France 

Frizarta, 7 
Lacaune, 7 
Assaf) 

Zootechnical  Backfat 
thickness 
(ultrasound) 

  300 
(30 ewes; 8 
Chios, 8 
Frizarta, 7 
Lacaune, 7 
Assaf) 

 

Zootechnical Milk yield 918  
(795) 

40 
(40) 

190 
(38 Chios ewes) 

10,870 
(5,014: 4,105 
Lacaune ewes, 
355 Manech 
Tete Rousse, 
229 Manech 
Tete Noire and 
325 Basco-
Bearnaise) 

 Milk 
composition 

918 
(795) 

40 
(40) 

190 
(38 Chios ewes) 

10,870 
(5,014) 

Zootechnical  Body 
Condition 
Score 

177 
(54) 

 490 
(68 ewes: 46 
Chios, 8 
Frizarta, 7 
Lacaune, 7 
Assaf) 

18,907 
(5,064) 

Zootechnical Morphological 
traits 

    

Zootechnical Average Daily 
Feed intake 

144 
(48) 

40  14,931 (from 
pen intake) 
(3,577) 

Ruminal 
microbiota 

16S 
sequencing 

918 
(795) 

  / 

Ruminal 
microbiota 

18S 
sequencing 

   / 

NMR  ruminal fluid 174 
(54) 

   

NMR plasma 174 
(54) 

40   

NMR milk     

Metabolites β-HB, NEFA, 
total proteins, 
and hormones 

174 
(54) 

 300 
(30 ewes; 8 
Chios, 8 
Frizarta, 7 
Lacaune, 7 
Assaf) 
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Group of traits Trait France- INRAE Spain - 
UNILEON 

Greece - AUTH France Races 
de France 

Gas 
chromatography 

ruminal 
volatile fatty 
acids 

 40   

NIRS faecal NIRS     

 15N natural 
abundancies 

    

ruminal 
parameters 

pH, Ammonia,   40   

transcriptomics RNAseq in 
milk cells 

 28   

epigenetics Whole-
genome 
bisulfite 
sequencing 

 28   

Genotypes Illumina 50K 54    

 

For UNILEON deviations: The rescaling of the experiment (i.e., from 48 in DoA to 40) was due to budget 

constraints. The number of animals was reduced for analytical processes, such as WGBS and RNA-seq, 

with high individual costs. In addition, Table 1 of the DoA describes the complete size of the population, 

but a selection of the animals sampled for the different markers (epigenetic marks, DGE, etc.) was 

necessary to comply with the approved budget. In all cases, despite the limited budgetary availability, 

the objective was to maintain an experimental design that allowed reasonable statistical power, 

limited by budgetary availabilities. 

Regarding AUTH partner: Forty-eight ewes were proposed to be used in different experimental 

scenarios (Table 1 of DoA) with a relative low risk regarding their implementation (section 1.3.5; WT5 

Critical Implementation risks and mitigation actions). However, in section 3.4 (resources to be 

committed) and in particular 3.4.1 (Other direct costs) no budget was foreseen for either purchase of 

animals or feeds for partner AUTH that could facilitate the implementation of experiments as initially 

planned. Therefore, Partner AUTH had to improvise mitigation strategies and use its own resources to 

cater the needs of planned experiments to address the anticipated objectives. Hence, at the time of 

the commencement of the first experiment AUTH had available only 30 ewes to be used. Moreover, 

following the discussions between partners involved in WP1 during the first annual meeting in 

Edinburgh, AUTH proposed to undertake an extra experiment, not foreseen in the DoA, that would 

explore the possibility of identifying an easy and non-invasive indicator of feed efficiency. Specifically, 

the potential use of milk composition traits as predictors of feed efficiency in Chios dairy ewes was 

investigated. It should be noted here that the proposed experiment was done using existing animal 

and feed resources of partner AUTH since as stated in the DoA (section 3.4 resources to be committed, 

and in particular 3.4.1 Other direct costs) no budget was foreseen for either purchase of animals or 

feeds for partner AUTH. Feed efficiency phenotypes (feed intake and milk yield) were collected and 

analysed including milk composition traits exclusively to address the objectives set in SMARTER 

project.    
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3.2 Dairy Goats 

Table B: number of records collected per partner for Dairy Goats, the number of distinct individuals is 

given in brackets.  

 

Group of traits Trait France- 
INRAE 

France – Capgènes UK-SRUC 

Breeds in DoA – 
Table 1 

all Alpine 
(divergent 
line) 

Alpine and Saanen Yorkshire composite 

Numbers of 
individuals in 
DoA – Table 1 

all 180 
phenotyped 
and 180 
genotyped 

10,000 phenotyped and 
1,500 genotyped 

25,000 phenotyped 
and 13,000 
genotyped 

Breeds in D1.1 all Alpine 
divergent 
line 

Alpine and Saanen Yorkshire composite 

Zootechnical  Body weights    9,970 
(1,146) 

Zootechnical  Muscle Depth 
(ultrasound) 

   

Zootechnical  Backfat 
thickness 
(ultrasound) 

   

 Milk yield  30,117 
(6,124: 2,582 Alpine 3,180 
Saanen and 111 from 
other breeds) 

9,970 
(1,146) 

 Milk 
composition 

 30,117 
(6,124) 

 

Zootechnical  Body 
Condition 
Score 

(199)   

Morphological 
traits 

chest width  3,044 
(3,044: 1,355 Alpine and 
1,679 Saanen) 

 

Zootechnical Average Daily 
Feed intake 

(143) 29,437 
(6,124: 2,582 Alpine and 
3,180 Saanen, 111 other 
breeds) 

9,970 
(1,146) 

Ruminal 
microbiota 

16S 
sequencing 

   

Ruminal 
microbiota 

18S 
sequencing 

   

NMR  ruminal fluid    

NMR plasma    

Metabolites β-HB,  2,080  
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Group of traits Trait France- 
INRAE 

France – Capgènes UK-SRUC 

(534) 

Gas 
chromatography 

ruminal 
volatile fatty 
acids 

   

NIRS faecal NIRS    

 15N natural 
abundancies 

   

GHG emissions     

Genotypes Illumina 50K 199 883  

 

Regarding INRAE deviations: A total of 199 dairy goats belonging to the high and low functional lines 

were produced with phenotyping of longevity. Out of the 199 dairy goats created, 80 were expected 

to be monitored for feed efficiency. However, we achieved to monitor 143 goats for feed efficiency in 

3 years, with the useful phenotypes being: individual intake of concentrates, weight and milk 

production in order to analyse residual feed intake (RFI). This data will be analysed in the next periods. 

 

3.3 Meat Sheep 

Table C: number of records collected per partner for Meat Sheep, the number of distinct individuals is 

given in brackets. *: without samples from 2021 experiment. 

Group of traits Trait France- 
INRAE 

France – Races de 
France 

INIA - Uruguay NSG 

Breeds in DoA – 
Table 1 

all Romane 
divergent 
lines 

Vendéen, Rouge 
de l’Ouest, BMC, 
Charollais 

Corriedale, 
Merino 

Norwegian 
White Sheep 

Numbers of 
individuals in 
DoA – Table 1 

all 2,350 
phenotyped 
and 1,000 
genotyped 

15,000 
phenotyped and 
50 genotyped 

85,000 
phenotyped 
and 220 
genotyped 

3,000 
phenotyped  

Breeds in D1.1 all Romane 
(divergent 
line on RFI) 

Vendéen, Rouge 
de l’Ouest, BMC 

Corriedale, 
Merino and 
Dohne 

Norwegian 
White Sheep 

Zootechnical  Body weights  2,662 (616) 20,671 (13,919: 
1,534 ewes + 
2,798 lambs in 
Mouton Vendéen, 
1,198 ewes + 56 
lambs in Rouge de 
l’Ouest and 2,579 
ewes + 5,754 
lambs in BMC) 

86,994 
(1,611) 

6,000 
(6,000) 

Zootechnical  Muscle Depth 
(ultrasound) 

1,064 (616) 20,671 (5,311: 
1,534 ewes in 

1,611 
(1,611) 
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Group of traits Trait France- 
INRAE 

France – Races de 
France 

INIA - Uruguay NSG 

Mouton Vendéen, 
1,198 ewes in 
Rouge de l’Ouest 
and 2,579 ewes in 
BMC) 

Zootechnical  Backfat 
thickness 
(ultrasound) 

1,064 (616) 20,671 (5,311) 1,611 
(1,611) 

 

Zootechnical  Body 
Condition 
Score 

 20,671 (5,311) 1,611 
(1,611) 

 

Zootechnical Morphological 
traits 

 5,311 
(5,311) 

/  

Zootechnical Average Daily 
Feed intake  

783 (616) / 1,611 
(1,611) 

 

Ruminal 
microbiota 

16S 
sequencing 

581 (346) /   

Ruminal 
microbiota 

18S 
sequencing 

387 (346) /   

NMR  ruminal fluid 581 (346) /   

NMR plasma 581 (346) /   

Gas 
chromatography 

ruminal 
volatile fatty 
acids 

581 (346) /   

NIRS faecal NIRS 430 (268) /   

 15N natural 
abundancies 

142 (71) /   

GHG emissions   / 3,012 
(1,506) 

6,000 
(6,000) 

Genotypes Illumina 50K 430  / 1,244  

 

For Races de France partner, 1,500 animals from 3 breeds were proposed, which numbers have been 

reached in Blanche du Massif Central (n=2,579 ewes + 5,754 lambs) and Mouton Vendéen (n=1,534 

ewes + 2,798 lambs) and close to be reached in Rouge de l’Ouest (n=1,198 ewes + 56 lambs). Numbers 

were lower than expected in the Rouge de l’Ouest breed because of the COVID-19 crisis. 

For NSG partner:  3,000 individuals were to be phenotyped for GHG with PAC. The aim was to measure 

them twice a fortnight apart. Measurements were however done in commercial flocks and not on a 

research farm, and returning to the same farm gathering the exact same animals two weeks after the 

first measurement was just not feasible practically. We therefore decided to measure 6,000 animals 

once instead of 3,000 animals twice yielding the same number of measurements. 
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4 Main results 

From the Tables A, B and C datasets, different traits and biological samples have been analysed, with 

different statistical methodologies. Technical details about the experiments, data collection and 

methods are detailed in parts 5, 6 and 7 for dairy sheep, dairy goats and meat sheep respectively. 

In Table D, we give the main results that were obtained. 

Table D: Description of proxies studied in dairy sheep, dairy goats and meat sheep, and results about 

their potential to predict feed intake and/or fed efficiency. 

Evaluated in :

dairy 

sheep

dairy 

goat

meat 

sheep

Body weights X X X

Involved in RFI calculation (through metabolic weight and average daily 

gain) and can be considered as part of the proxies  of feed intake and, to 

a less extent, of feed efficiency

Muscle Depth and Backfat Thickness 

(ultrasound)
X X Can be used in the RFI calculation but its importance is low

Milk yield X X
Involved in feed efficiency criteria (ratio and RFI) and can be considered 

as part of the proxies of feed efficiency

Milk fat and protein contents X X Involved in feed efficiency criteria (through energy corrected milk )

Body Condition Score X X X
Trajectory of BCS are correlated with feed efficiency ratios in dairy 

sheep

Wool traits (Greasy Fleece Weight, Clean Fleece 

Weight, average Fibre Diameter, Coefficient of 

Variation of Fibre Diameter, and Staple Length) 

X Can be used in the RFI calculation but its importance is low

greenhouse gas (CH4 and CO2) emissions and 

O2 consumption
X

Can be used along with body weights and growth as proxies for feed 

intake, but gas emissions recording is currently not doable on a large 

scale. New technnologies are required to record gas emissions on a 

large scale.

Morphological traits (chest width, chest depth, 

shoulder height )
X X X Chest width might be considered as a proxy for body weight

Average Daily Feed intake X X X
Mandatory trait to estimate all feed efficiency criteria, but not 

recordable on a large-scale. We are looking for proxies for this trait.

metabolomics (NMR) X

milk fatty acids composition (gas 

chromatography) X

milk protein, lactose X

fine composition (MIR spectra) X

plasma metabolomics (NMR) X X

Citrate, malate and amino acids can be considered as proxies for feed 

efficiency, but NMR is not doable routinely. New technnologies are 

required to record these metabolites on a large scale.

targeted metabolites (β-HB) X X

NEFA, total proteins, and hormones X

plasmatic 15N natural abundancies X

15
N natural abundancies is a good proxy for FCR under a forage-based 

diet, but this trait is currently too expensive to be recordable on a large-

scale

faecal traits NIRS X
Can be proposed as a proxy of feed intake or feed efficiency in 

integrative models.

pH, Ammonia, X

microbiota (16s and/ or 18S sequencing) X X

metabolomics (NMR) X X

volatile fatty acids (gas chromatography) X X

RNAseq in milk cells X

Whole-genome bisulfite sequencing of milk 

cells
X

Group of traits
Proxy for feed efficiency, recorded at the 

individual level
Importance and potential use as large scale measurable proxy

These traits are recorded in order to understand the biology underlying 

feed efficiency. They can not be considered as proxies for feed efficiency 

because the sampling is not doable routinely.

Milk molecular traits 

(not routinely 

recorded)

These traits are recorded in order to understand the biology underlying 

feed efficiency. They can not be considered as proxies for feed efficiency 

because the sampling is not doable routinely and because of low 

accuracies of predictions.

Milk fatty acids are proxies for feed efficiency traits (FCR and RFI). Milk 

fat and lactose contents are indicators of a more efficient use of energy 

intake. Milk metabolomics is indicator of the level of feed efficiency.

These targeted metabolites still need to be analysed as potential proxies 

for feed efficiency.

Zootechnical (routinely 

recorded traits)

Zootechnical (not 

routinely recorded 

traits)

Milk traits (not 

routinely recorded)

Blood traits (not 

routinely recorded 

traits)

Ruminal traits
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Our objective is to identify proxies of feed efficiency indicators such as RFI and FCR. An alternative to 
the prediction of feed efficiency traits might be the prediction of one of the key components of FE, e.g. 
feed intake itself. In many dairy sheep and dairy goat experiments, only concentrate intake was rec-
orded, with little (or no) knowledge of forage intakes. However, when considering average feed intake 
values in dairy sheep, we observed an important re-ranking of feed efficiency estimates. Therefore, 
feed intake is one of the most important factors to consider in feed efficiency traits calculations, along 
with milk production. We are therefore aiming at proposing proxies for feed efficiency traits, but also 
for feed intake.  
 
Milk composition related traits are expected to be relevant to predict feed efficiency traits in lactating 
ewes: milk fat content as well as lactose content has been proposed as a good indicator of energy 
intake in lactating ewes, and milk fatty acids composition has been found to be associated with feed 
efficiency traits. Moreover, the prediction of feed efficiency traits from milk fatty acids composition 
reached good performances. Body condition scores have been the most recorded trait in dairy sheep 
and goats. No significant link has been found between time-point BCS and feed efficiency traits, but 
individuals with different body condition score dynamics along the lactation had different feed effi-
ciency levels. In non-lactating ewes, variations in body composition traits have also been proposed as 
relevant proxies for negative energy balance status. 
 
We report here the first studies of feed efficiency along the lactation stages in dairy goats. No proxies 
of feed efficiency neither of feed intake have already been proposed. Still, analyses of recorded traits 
such as beta-hydroxybutyrate in combination with classical recorded traits during lactation will be per-
formed soon. Moreover, in dairy goats, it will be interesting to test the ability to predict feed efficiency 
from milk fatty acids composition, considering promising results obtained in dairy sheep. 
The largest number of feed intake records and thus of feed efficiency estimates were obtained in meat 
sheep. Usually, feed intake control periods are performed on a 42-days basis. However, we demon-
strated that shortening the period by a week has no impact on RFI estimates. Moreover, RFI can be 
calculated with the most parsimonious model that just considers feed intake, body weight, and aver-
age daily gain. Wool traits and body composition traits never reach significance in the models. Regard-
ing proxies of feed intake, the combination of greenhouse gas emissions with body weights and av-
erage daily gain was found to be highly performant in the prediction of animals with extremely high 
or low feed intake levels. Multivariate analyses considering fixed effects and body weight also reached 
good levels of accuracy for the prediction of feed intake. The analyses of fine phenotypes (mainly omics 
data) showed that, when considered separately, ruminal variables seem to be less promising than plas-
matic variables (citrate and amino acids mainly) to predict feed efficiency. The multi-omics integration 
of these datasets will be performed to highlight potential combinations of variables predicting feed 
intake or feed efficiency. 
Finally, it should be noticed that ruminal variables (metabolites, microbiota) did not help in predicting 
feed intake nor feed efficiency. Prediction accuracies were higher for feed intake than for feed effi-
ciency traits. 
 
Future genetic analyses of the proposed proxies will be performed, and particular attention will be 
paid to genetic correlation with feed intake-related traits, including feed efficiency traits. 
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5 Dairy Sheep 

5.1 Materials and Methods 

5.1.1 Experimental designs 

1. France (INRAE) 

 

Two experimental designs were interconnected in the INRAE La Fage experimental farm: A- a large set 

of adult Lacaune ewes (n=795) belonging to MicroGenOL programme; B- a subset of 54 ewes with in-

depth phenotyping during 3 successive lactations (feed intake recorded within the framework of the 

iSAGE programme).  

A- From 2015 to 2019, 700 adult ewes belonging to 2 divergent lines (on Somatic Cell Score or on Milk 
Persistency) and 95 ewes from different genotypes at the SOCS2 mutation were genotyped and have 
their rumen microbiota quantified while indoor rearing. Animals were fed with 93% meadow hay and 
silage plus 7% of concentrate. On the one hand, two groups of ewes with extreme EBVs were created 
according to the log-transformed somatic cell count (SCC): difference between high-SCS line (SCS+) and 
low-SCS line (SCS-) reached 3.6 genetic standard deviation. On the second hand, two extreme groups 
of ewes were generated, one with high persistence (PERS+) and one with low persistence (PERS-) in 
the milk production curve; difference between these PERS lines reached 2.1 genetic standard 
deviation.  
 
Blood was aliquoted for DNA extraction to perform: 

- Genotyping (Illumina 54K SNP ovine chip). 
Rumen fluid was aliquoted to perform: 
 - Microbiota analysis through the sequencing of V3-V4 regions of the 16S-rRNA gene. 
At the nearest milk recording control, the fine milk composition was predicted from MIR spectra of 
milk.  
 
- SNP control was done by defining a minimum call rate for individuals and loci and minor allele fre-
quencies for the marker. 
- Microbiota analyses: microbiota analyses were performed on all ewes phenotyped for a total of 795 

animals. All sequences were analysed with the FROGS pipeline in the same batch. Microbiota counts 

obtained from FROGS were transformed in Centered Log Ratios (CLR) after the imputation of zeros by 

applying the Geometric Bayesian Method (GBM) (Martinez-Boggio et al., 2021) to consider their 

compositional nature. The lines effects (SCS and PERS) were estimated (Martinez-Boggio et al., 2021) 

and the work is in progress to evaluate the genetic links between rumen microbiota and milk 

compositions, and their microbiabilities.  

B- Within the framework of iSAGE H2020 project, 54 Lacaune dairy ewes belonging to divergent lines 

for milk persistency only (PERS lines, with a genetic divergence of 2 s.d. on average), have been 

recorded for their bodyweight and the changes in their body reserves. Plasma measurements were 

performed for some metabolites and hormones monitored for two months at the beginning of 

lactation for three lactations (Lactation 1 to Lactation 3 from 2017 to 2019). Milk production, fat and 

protein contents, somatic cell count, and MIR spectra were collected at each official milk recoding 

control every three weeks. For half of these ewes, individual feed intake was also recorded to calculate 

individual energy and protein balance estimates. 
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The main iSAGE results show that the energy and nitrogen balances are different from one lactation 

to the next one: the ewes in 2nd lactation have these two balances the lowest on average. Despite the 

large inter-individual variability, the PERS+ line differs from the PERS- in terms of energy balance and 

plasmatic beta-hydroxybutyrate levels, but with no difference in nitrogen balance. 

The SMARTER programme aims to deepen these results by adding new and finer phenotypes, such as 

quantifying rumen microbiota and metabolites (with no a priori) either in the rumen or blood. The 

objective was to identify other metabolites linked to variations in body reserves in dairy ewes and to 

make links between rumen microbiota composition and metabolites in the rumen and plasma. In 

parallel, we would like to characterize more precisely the fine metabolic response to selection on milk 

persistency and identify, if it exists, a "typical metabolism" for ewes that manage their energy deficit 

better. So each year, samples of blood and rumen fluid were collected when energy balances were the 

most contrasted (according to iSAGE results). 

Blood was aliquoted to perform: 
- Genotyping (Illumina 54K SNP ovine chip). 
- Plasma is stored (after 10 minutes of centrifugation at 2400g) to perform metabolomics 

by NMR. 
Rumen fluid was aliquoted to perform: 

- Metabolomics by NMR 
- Microbiota analysis through the sequencing of V3-V4 regions of the 16S-rRNA gene. 

 
SNP genotyping was performed by Labogena company (Jouy-en-Josas, France) on Illumina 54K SNP 

ovine chips within the framework of MicroGenOL programme.  

Laboratory analyses: protocols used to obtain NMR spectra from plasma and rumen juice and 

microbiota sequences are detailed in Appendix 1. 

- SNP control was done by defining a minimum call rate for individuals and loci and minor allele fre-
quencies for the marker. 
 

- Microbiota analyses: microbiota analyses were performed on ewes phenotyped in 2017, 2018, and 

2019. A total of 177 ruminal samples were collected and sequenced with RNA 16S. Samples collected 

in 2018 belonged to a previous program -named MicroGenOL- were sequenced in one run, and 

samples from 2017 and 2019 were sequenced in a second run. Among these samples, six ewes were 

only sequenced in their first lactation in 2017, 9 ewes on the two first lactations, and 51 ewes were 

phenotyped each of the 3 years. All sequences were analysed with the FROGS pipeline in the same 

batch.  

Microbiota counts obtained from FROGS were analysed as previously detailed. Focusing on the 153 

samples (51 ewes with the 3 years of samples) and after identifying the main fixed effects, the work 

evaluates the possible line effect and the repeatability of OTUs according to years.  

- Metabolomics analyses: NMR analyses were performed on 174 blood samples and 174 rumen juice 

samples corresponding to 52 ewes with 3 years of sampling and 9 ewes with only 2 years of sampling. 

Analysis of these raw spectra with the ASICS (version 2.5.3) R package (Lefort et al., 2019) was done to 

quantify the abundances of main metabolomes.  
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2. Spain (UNILÉON-CISC) 

 

All experimental procedures were approved (CSIC Approval No. OH-726-2018 / IGM Approval 
No. 100102/2018-1) by the Research Ethics Committee of the Instituto de Ganadería de Montaña, the 
Spanish National Research Council (CSIC), and the Junta de Castilla y León (Spain), following procedures 
described in Spanish and European Union legislation (R. D. 53/2013 and Council Directive 2010/63/EU). 

Experimental population 

The main objective of the UNILEON/CSIC experiment is to know if a nutritional challenge in the 
allometric stage of lamb growth influences the animal's feed efficiency during the milk production 
period.  

In order to constitute a population of 40 adult pregnant ewes with synchronized lambing in the 
same period, a total of 76 ewe lambs from the Assaf breed were selected.  The primary selection 
criterion was to choose contemporary animals (same lambing group), with similar lambs for both tails 
of the distribution of EBVs for milk production. Since lambs were purchased when they were only 1 
month old, the average parent EBV provided by the breeders’ association (ASSAFE) was used to 
estimate their EBV. Thus, 76 female lambs were selected (38 with high EBV and 38 with low EBV) and 
transferred to the experimental farm of the Instituto de Ganadería de Montaña (CSIC-UNILEON) at 2.5 
months of age. Once they passed the veterinary control and adapted to the new facilities, they were 
separated into the Control group (C) and Nutritional Challenge group (NC), with a uniform distribution 
of EBV for MY in both groups. The lambs in the C group received the same diet as during the first month 
(standard feed for growth lambs), whereas the animals in the NC group received a diet with a 42.3% 
protein restriction compared with the C group. The nutritional challenge lasted approximately two 
months, between 3.5 and 5.5 months of age of the animals. Then, females were mated at around ten 
months of age (AI), and parturition occurred five months later. A schedule of the above is shown in 
Figure 1. During the lactation, different measurement periods were carried out as described below. 

Figure 1. Schematic representation of the experiment developed at UNILEON-CSIC. The upper timeline 
is divided into months of the experiment. 
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Of the 76 animals initially purchased, six did not reach mating age, and 21 ewe-lambs did not 
become pregnant with AI flock and therefore could not be included in the intensive sampling period 
as they lambed one month after the main group. Finally, 49 animals were available for the intensive 
sampling period. As the economic readjustment allowed us to sample 40 animals, 20 nutritionally 
challenged (NC), and 20 controls (C) ewes were chosen. The EBV distribution for milk production allows 
us to make two groups: high EBV (H_EBV) with an average EBV of 86.5 ± 3.4, and low EBV with an 
average EBV of 37.4±3.5. The average EBV in Controls and NC was 58.7 ± 7.1 and 62.6 ± 6.1, 
respectively. A description of the basic statistics of the EVBs is provided in Appendix 1 

 

Management in the intensive sampling period for Feed efficiency in adult ewes 

Forty primiparous lactating Assaf ewes (BW = 63.6 ± 1.23 kg; DIM = 33 ± 1.3 at the beginning of 
the experiment; MY = 2.40 ± 0.098 kg/d and VF_150 62.1 ± 4.57) were used in this assay. Estrus had 
been synchronized and lambing concentrated in a few days to avoid differences due to the lactation 
stage.  

Sheep were housed in individual tie stalls and fed ad libitum a TMR formulated from alfalfa hay 
(particle size > 4 cm) and concentrate (50:50) that they had been consuming since lambing. The diet 
included molasses to reduce the selection of ingredients, together with chemical composition, as 
shown in Table 1. Ewes were milked twice daily at approximately 08:30 and 18:30 h in a single-side 
milking parlor with 10 stalls (DeLaval, Madrid, Spain). 

Table 1. Formulation of the experimental diet (g/kg of fresh matter) 

 TMR 

Dehydrated alfalfa hay (particle size >4 cm) 500 
Whole corn grain 140 
Whole barley grain 100 
Soybean meal solvent 44% CP 150 
Sugar beet pulp (pellets) 50 
Molasses (liquid) 40 
Vitamin-mineral supplement1 20 

1MACROFAC Rumiantes (UP911755130; DSM Nutritional Products S.A., Madrid, Spain). Declared as 

containing: Ca (285 g/kg), Na (7.5 g/kg), Fe (3 g/kg), Mn (3 g/kg), Zn (2 g/kg), Mg (1 g/kg), P (910 mg/kg), 

Mo (100 mg/kg), Co (67 mg/kg), I (50 mg/kg), S (40 mg/kg), Se (7 mg/kg), vitamin A (200,000 IU/kg), 

vitamin D3 (40,000 IU/kg), vitamin E (667 mg/kg), ethoxyquin (12 mg/kg) and propyl gallate (2 mg/kg). 

Measurements and Sampling Procedures 

Diet. Feed intake was individual and daily measured over four weeks by weighting the diet dry 
matter (DM) offered and refused by each animal. Representative samples of the diet were collected 
(n = 3), stored at –30°C, and freeze-dried before chemical analysis. 

Milk. Total milk produced by each animal, at morning and evening milkings, was also collected 
and weighed individually and daily for 4 weeks (5-8 of lactation) to calculate milk yield. Composite 
samples of the milk produced by each ewe were prepared daily according to individual yields in both 
milkings. One aliquot of that composite milk was preserved with bronopol (D&F Control Systems Inc., 
San Ramon, CA, USA) and stored at 4°C until analysis for fat, protein, and lactose concentrations by 
infrared spectrophotometry. Furthermore, on weeks 2, 3, and 4 of the experiment, aliquots of 
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composite milk (n = 4) from each ewe were collected and stored without preservative at −30ºC for FA 
analysis. 

Furthermore, two milk samples per animal were collected for RNA extraction from milk somatic 
cells (MSC) on weeks 6-8 of lactation.   

Body weight. The BW of each sheep was recorded at the beginning and the end of the 4-week 
period. 

Rumen liquor. Rumen fluid samples from each sheep were collected to analyze fermentation 
parameters (pH, ammonia, lactate, and volatile fatty acids) and fatty acids (FA) profiles. The diet was 
offered, as usual, after the morning milking, but only for 1 h. Afterward, feed and water were removed 
and 3 h later, ewes were sampled using an oral stomach probe (Ramos-Morales et al., 2014).  

Plasma samples. Blood samples were collected for extraction of plasma on week 6 of lactation 
for later metabolomic analyses. Appropriated collection tubes with lithium heparin were used. After 
collection, blood samples were homogenized and centrifuged at 2500 rpm for 12 min. Then, plasma 
samples were frozen at −80°C. 

 

Estimation of Feed Efficiency 

To estimate the feed efficiency, residual feed intake (RFI) was calculated as the residuals of the 
following regression model using the GLM procedure of the SAS software package (version 9.4; SAS 
Institute Inc., Cary, NC, USA): 

DMI = μ + a × ECM + b × MBW + c × ΔBWBW + RFI 
where DMI represents the mean DM intake over the period (kg/day); μ is the intercept; ECM is the 
mean energy-corrected milk (kg/day); MBW is the mean metabolic body weight (BW0.75; kg); ΔBWBW is 
body weight change over the period adjusted for mean body weight (ΔBW × BW); RFI is the residuals; 
and a, b, and c are the regression coefficients. All variables included in the model were statistically 
significant. 

The same procedure was used to estimate the residual energy intake (REI; Fischer et al., 2018) 
as the residuals of the following regression model: 

NEI = μ + a × NEL + b × MBW + c × ΔBWBW + REI 
where NEI represents the mean net energy intake over the period (MJ/day); μ is the intercept; NEL is 
the mean net energy requirements for lactation (MJ of net energy/day); MBW is the mean metabolic 
body weight (BW0.75; kg); ΔBWBW is body weight change over the period adjusted for mean body weight 
(ΔBW × BW); REI is the residuals; and a, b, and c are the regression coefficients. 

Milk yield and milk composition data were used to estimate energy-corrected milk [ECM = kg/d 
of milk yield × [(0.0071 × g/kg of milk fat) + (0.0043 × g/kg of milk protein) + 0.2224], and net energy 
requirements for lactation (NEL = 0.686 × ECM, and expressed as MJ of net energy/day), according to 
INRA (2018) equations for sheep. 

In addition, the feed conversion ratio (FCR) was calculated as the relationship between mean 
DMI and ECM over the period. 

 
Laboratory Analyses and bioinformatics pipelines: see appendix 1 

Statistical analyses: 
RNA-seq analyses 
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Whole-transcriptome analysis of milk somatic cell transcriptome was performed in animals with dif-
ferent feed efficiency. This experiment aims to contribute to WP1 in two aspects. First, it identifies 
differentially expressed genes in animals diverging in feed efficiency that could be used as biomarkers. 
Second, it contributes to moving forward the knowledge of the genetic basis of feed efficiency. 
 
Data are analyzed to identify differentially expressed genes (DEGs) following a bioinformatic pipeline 
previously applied by our research group, described by Suarez-Vega et al. (2017). Additional enrich-
ment analyses will help to identify the biological pathways and gene networks related to ovine sheep 
efficiency. 
The DESeq2 package (Love et al., 2014), commonly used in differential expression studies, was used to 
focus on the differential analyses of low vs. high RFI animals. 

To perform the differential expression analyses with DESeq2, we fitted two different models. The 
first one was Y=nutritional challenge+RFI, in which Y is the gene expression counts, Nutritional chal-
lenge classifies the animals in controls and NC, and the RFI variable classifies the animals in high- low-
FE. The second model was fitted assuming an interaction between the nutritional challenge and the 
RFI (Y=nutritional challenge+RFI+ nutritional challenge:RFI). Differentially expressed genes were con-
sidered at a false discovery rate (FDR) < 5%. 
The Weighted Gene Co-expression Network Analysis (WGCNA) (Langfelder and Horvath (2008) R pack-
age was used to build co-expression networks and identify groups of highly co-expressed genes. Indi-
vidual analyses were conducted on each breed group (High and Low RFI, and C and NC animals). In 
order to evaluate the performance of transcriptomic data to predict FE, predictive models were built 
for RFI and FCR. As predictive features, we used gene expression values from two gene lists: (1) DEGs 
resulting from the contrast between consensus ewes for both indexes (1,017 genes; consensus-DEGs); 
(2) genes found in common between consensus-DEGs and a previous study evaluating FE in dairy Assaf 
ewes (45 genes; reduced-consensus-DEGs) (Suarez-Vega et al., 2023; Suarez-Vega et al., in prepara-
tion). Machine learning (ML) models were built based on Random Forest (RF) using the R package h2o 
(LeDell et al., 2020). A random discrete search composed by 5 folds cross-validation was performed 
during the hyperparameter tuning stage. In total, 100 models were built for each ML algorithm (2 traits 
x 2 lists of DEGs) through the random assignment of the transcriptomic data of 28 ewes, specifically 
we used 2/3 of the total dataset as train data (20 animals) and 1/3 as test data (8 animals) samples. 
For the 100 iterations of random assignments, none of the train and test sets generated were com-
pletely equal. For each model, we calculated the root mean squared error (RMSE) and the Spearman 
correlation (rho2) between the predicted and real values of RFI and FCR in the training stage. 
 
Association of milk fatty acids with feed efficiency in Assaf sheep during lactation 
After examining milk samples of the 40 lactating ewes by gas chromatography, a fatty acid (FA) profile 
was obtained for each animal. The constant sum of the concentrations of these FA suggests the com-
mon constrain that suffers data referred to as compositional data (Gloor et al., 2016). Therefore, FA 
measurements were transformed via centered log-ratio (CLR) for correcting sparse compositionality 
(Aitchison, 1982). 
Following, to assess whether the milk FA composition significantly contributes to variation of the feed 
conversion ratio (FCR) and the residual feed intake (RFI), described above, we applied three quantita-
tive analyses. We estimated the Spearman correlation and regression coefficient of each FA analysed 
with both feed efficiency parameters (FCR and RFI) to characterize the association level of the Milk FA 
CLR-transformed parameters with the feed efficiency indexes. Finally, we carried out an orthogonal 
partial least squares (OPLS) analysis and an orthogonal partial least squares discriminant analysis 
(OPLS-DA) over the FA CLR-transformed data using the R package ROPLS (Thévenot et al., 2015). These 
last analyses aimed to identify those FA useful in the prediction of feed efficiency indexes. 
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Association of milk metabolomics features with feed efficiency in Assaf ewes. 
After milk processing, reversed-phase liquid chromatography-mass spectrometry (LC-MS) was per-
formed to detect features ranging from polar to less polar compounds and lipids. Four high-resolution 
LC‒MS datasets were obtained, and each dataset was processed using the R package XCMS (Smith et 
al., 2006). The processing steps(see Appendix 1 for a detailed description) included peak detection, 
peak grouping, peak alignments, and retention time shift correction. The resulting dataset included 
pairs of MS m/z and LC retention time (RT, min) for the detected compound features across all the 
samples within each dataset. This procedure revealed 3760 feature signals. Those for which less than 
75% of the data were available from the ewes were filtered out, resulting in a final dataset composed 
of 3749 features. The ewes were classified into high, medium, and low FE groups for RFI (H-RFI, M-RFI, 
L-RFI) and FCR (H-FCR, M-FCR, L-FCR) based on the distribution of each metric. The mean of each group 
was compared using a t-test with R v.4.2.0, where the significant differences between groups were 
defined based on a p-value <0.05. Additionally, the mean DMI was compared between each group for 
RFI and FCR using the same approach. All p values were adjusted to a false discovery rate (FDR) thresh-
old of 0.05. The R package mixOmics (Rohart et al., 2017) was used to perform a partial least squares 
discriminant analysis (PLS-DA) to evaluate the potential of selected features to discriminate the high, 
medium, and low FE groups for both RFI and FCR. The area under the curve (AUC) was calculated to 
estimate the discrimination potential of PLS-DA among the three FE groups. The first two principal 
components were plotted with centroids to define the groups identified by the PLS-DA using the plotIn-
div function in the mixOmics package. Additionally, the performance of PLS-DA for the RFI and FCR 
groups was evaluated based on the mean error rate and Q2 for the first five principal components 
through cross-validation u lines 180-27sing 10 folds. Once the ewes were assigned to each group, the 
variable importance in the projection (VIP) was estimated to compute the influence on the features of 
every predictor in the PLS-DA model. Features with a VIP>2 were selected individually from the outputs 
of the discriminant analysis for RFI and FCR.  
For the prediction of individual RFI and FCR using milk metabolomics features and ML algorithms, pre-
dictive models were built using the CLR-transformed values for each of all 3749 detected features 
(RFI_all and FCR_all) and for the subsets of features selected in the PLS-DA analysis for RFI and FCR 
with VIP>2 (RFI_VIP and FCR_VIP). The ML models were built based on a multilayer feedforward arti-
ficial neural network (deep) and random forest (RF) using the R package h2o (LeDell, et al., 2020), 
extreme gradient boosting (xgboost) using the R package xgboost (Chen and Guestrin, 2016), and sup-
port vector machine (SVM) using the caret R package (Kuhn, 2008). For the deep and RF algorithms, a 
random-discrete search composed of 5-fold cross-validation was performed during the hyperparame-
ter tuning stage. The hyperparameter tuning stage for SVM and XGBoost was performed using an ex-
tensive search. The tuning stage for xgboost used 1,000 as maximum boosting interactions and 10 
interactions as early stopping (stop if there is no improvement for 10 consecutive trees). SVM hyperpa-
rameter tuning was performed using the caret package with the “repeatedcv” method with 10 folds 
and 5 repeats. The grids explored in each ML algorithm are presented in Supplemental Table 1 
(https://zenodo.org/record/8154651). 
 
Performance of DMRs in milk somatic cells to predict feed efficiency in Assaf sheep  
In the Assaf experimental population, DNA methylated marks in the genome of milk somatic cells were 
identified by whole genome bisulphite sequencing (see Appendix 1 for details). Differentially methyl-
ated regions (DMRs) were identified in divergent animals for residual feed intake using RFI (RFI, 7 H-
RFI, and 7 L-RFI), FCR (FCR, 7 H-FCR, and 7 L-FCR), and a consensus between both metrics (Cons, 6 H-
Cons and 6 L-Cons). These DMRs were used to assess the accuracy of prediction RFI and FCR using 
machine learning models. Predictive models were built using the mean methylation within each de-
tected DMR as features. To estimate the predictive potential of these features DMRs identified in the 
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comparison between extreme RFI groups were used to predict RFI values (mRFI_RFI), DMRs identified 
in the comparison between extreme FCR groups were used to predict FCR values (mFCR_FCR), and 
DMRs identified in the comparison between extreme consensus groups were used to predict both RFI 
(mCons_RFI) and FCR (mCons_FCR) values. Additionally, the predictive performance of three machine 
learning (ML) models (xgboost, random forest (RF) and multi-layer feedforward artificial neural net-
work (deeplearning)) was evaluated using the mean methylation level within the identified DMRs and 
genetic variants mapped within these regions. For the predictions, 100 steps of random-sampling of 
animals in the training and test sets were performed for each scenario. The average performance of 
each model was based on the root mean squared error (RMSE) and squared Spearman correlation (r2). 

 

3. Greece (Univ Thessaloniki) 

 

First Greek experiment (AUTH) 

 

The objective of the first experimental study was (i) to assess the potential use of body composition 

traits measured with ultrasonography as predictors of energy balance and (ii) to use blood biomarkers 

as predictors of fat and muscle reserves and their mobilization in dairy ewes. 

 
Facilities, animals and study design 
Forty-eight ewes were proposed to be used in different experimental scenarios covering metabolic, 

genetic and nutritional aspects (Table 1 of DoA) with a relative low risk regarding their implementation 

(section 1.3.5; WT5 Critical Implementation risks and mitigation actions). However, in section 3.4 

(resources to be committed) and in particular 3.4.1 (Other direct costs) no budget was foreseen for 

either purchase of animals or feeds for partner AUTH that could facilitate the implementation of 

experiments as initially planned. Therefore, Partner AUTH had to improvise mitigation strategies and 

use its own resources to cater the needs of planned experiments to address the anticipated objectives. 

Hence, at the time of the commencement of the experiment AUTH had available only 30 ewes that 

were selected from four commercial flocks of Central Macedonia Region, Greece, and transferred to 

the Veterinary Faculty of Aristotle University of Thessaloniki farm facilities in Kolchiko Lagada. Selected 

ewes were purebred animals from four main dairy sheep breeds reared in Greece: Chios (n=8), Frizarta 

(n=8), Lacaune (n=7), and Assaf (n=7). The ewes (3-5 years of age) were clinically healthy, non-

pregnant, non-lactating and in good body condition (BCS of 2.5-3.0). 

Upon arrival, all ewes were clinically examined, individually weighted, body condition scored, and 

received an anthelmintic treatment. Initially, ewes were kept as one group in a wheat straw bedded 

pen and received a daily ration consisting of 0.3 kg Lucerne Hay, 0.2 kg wheat straw, and 0.5 kg of a 

pelleted concentrate mixture (corn grain 90%, soybean meal 8%, vitamins, and minerals 2%). Following 

this 3-week acclimatization period, ewes were allocated in four identical straw bedded pens based on 

their breed. Each pen was equipped with one feeder and two watering troughs that provided unlimited 

access to water throughout the day. Ewes were kept under the same feeding schedule for another 

week before the actual start of the experimental protocol with designated feeding treatments.  

Ewes were subjected to specific feeding treatments to induce distinctive changes in body weight (BW) 

and BCS across the trial period (Figure 2). During the six weeks of the fattening period, ewes were 

offered a ration formulated to supply 160% and 150% of mean maintenance energy and protein 

requirements, respectively, at predicted dry matter intake within each breed group. At the end of the 

third week of the fattening period, the quantity of the ration was adjusted according to the new mean 

body weight in order to provide the same surplus amount of nutrients. Thereafter, ewes were fed the 
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ration they received during the acclimatization period for a two-week transition period. During the 

following four weeks of the experiment (fasting period), ewes were submitted to restricted feeding 

designed to supply 60% and 55% of mean maintenance energy and protein requirements, respectively, 

based on the BW at the onset of the fasting period.  

Nutrient requirements were calculated using the INRA recommendations (UFL_main = 0.033xBW0.75; 

PDI _main = 2.5xBW0.75, INRA, 2007). The formulated rations were offered twice daily during the 

experiment (09:00 and 17:00). Nutrient requirements were adjusted according to changes of BW for 

the whole experimental period.  

 

 

 

                                                                                                                                                                        
 
 

Figure 2. Experimental design. 

*Acclimatization period: ewes were offered a daily ration consisting of 0.3 kg Lucerne Hay, 0.2 kg wheat straw 

and 0.5 kg of a pelleted concentrate mixture; 
†Fattening period: ewes were offered a ration designed to supply 160% and 150% of mean maintenance energy 

and protein requirements, respectively; 
‡Transition period: ewes were fed the ration they received during the acclimatization period; 
ⱡFasting period: ewes were offered a ration designed to supply 60% and 55% of mean maintenance energy and 

protein requirements, respectively. 

 

Data collection 
All animal measurements described below were performed at the end of each week during the 

fattening and fasting periods. 

Live individual BW of ewes was measured before the morning feeding with a portable digital scale 

(accuracy 0.5 kg). BCS was assessed by palpation in the lumbar region by the same experienced 

evaluator using the 5-point scale (1-emaciated to 5-obese, in 0.25 point increments) suggested by 

Russel et al. (1969). 

Backfat (BFT) and longissimus dorsi muscle (LDT) thickness were determined with ultrasonography. 

Each ewe was handled by two assistants, while the paralumbar area was shaved and cleaned with 

ethanol to move off debris. Measurements were performed with real-time B mode ultrasonographic 

equipment (Mindray 3300), using a 5.0 MHz, 55mm wide field of view linear transducer. Ultrasound 

gel was applied to the screening area to obtain adequate acoustic contact. The ultrasound probe was 

placed perpendicular to the vertebral column between the transverse processes of the 3rd and 4th 

lumbar vertebrae and slightly moved until a clear image was obtained. Images were frozen and 

immediately interpreted by the examiner. At each site, three measurements were performed at the 

same location in three consecutive scans, and the average value was recorded. All images were re-

evaluated after the end of the experimental period. Inter- and intra-evaluation coefficient of variation 

was <3%. BFT measurements always included the skin layer. LDT was evaluated at the same site as the 

largest distance between the two muscular fasciae. 

Finally, at the end of each week, a blood sample was collected from each ewe. Blood was collected 

from the jugular vein into 10 mL sterile glass vacuum tubes without anticoagulant (BD Vacutainer®, 

Plymouth, United Kingdom). After clotting, serum was obtained by low-speed centrifugation (2500 g × 

15 min) and stored at -20oC pending analysis.  

0d 3w 9w 11w 15w 

Acclimatization 

period* 

Fattening period† Transition 

period‡ 

Fasting periodⱡ 
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For each sample, concentrations of serum β-hydroxybutyrate (ΒΗΒ), non-esterified fatty acids (NEFA), 

total proteins (TP), albumins (Alb), and urea nitrogen (BUN) were determined using an automated 

biochemical analyzer (Vitalab Flexor E, Vital Scientific N.V, The Netherlands), and commercially 

available kits (ΒΗΒΑ: Ben biochem. Enterprise, Milano, Italy; NEFA: Randox Laboratories Limited, UK; 

TP and ALB: Human, Wiesbaden, Germany; BUN: Thermo scientific, Middletown, VA, USA). 

 

Data handling 
The changes in BFT (ΔBFT), LDT (ΔLDT), and overall combined values of BFT and LDT (ΔTotal) were 

calculated by subtracting from each measurement the previous one in the same ewe. Moreover, 

negative energy balance status was defined as serum BHB ≥0.8 mmol/L or NEFA ≥0.7 mmol/L according 

to literature in dairy sheep (Panousis et al., 2018) and cows (Ospina et al., 2010; Moore and de Vries, 

2020), respectively; due to lack of a research-based threshold for NEFA in dairy sheep, a stricter 

threshold set at ≥0.3 mmol/L was also defined. 

 

Statistical analysis 
The receiver operating characteristic (ROC) analysis was used to define thresholds for changes in body 

composition traits (ΔBFT, ΔLDT, and ΔTotal) to predict negative energy balance status (elevated BHB 

or NEFA status).  

Mixed linear models were used to test the association of blood biomarkers (BHB, NEFA, TP, Alb and 

BUN) as potential predictors of fat and muscle reserves (BFT and LDT) and their mobilization (ΔBFT and 

ΔLDT). Specifically, the associations of BFT and ΔBFT with BHB and NEFA and of LDT and ΔLDT with 

each of the biochemical analytes were tested. Preliminary analyses were performed to identify 

significant effects on the studied traits. The effects of breed and period were tested; only the 

significant effect of the period was included in the final model: 

 

Yijn= μ + Pi + b1*ΒΑ + Aj + eijn, 

 

Where: 

 

Yijn = BFT or LDT or Δ_BFT or Δ_LDT; 

μ = overall population mean; 

Pj = fixed effect of period (two levels); 

b1 = regression coefficient on each biochemical analyte (BA; BHB, NEFA, TP, Alb, BUN); 

Aj = random effect of the animal (j=1-30 ewes); 

eijn = random residual effect 

 

All analyses were performed with IBM SPSS v.25 (Armonk, NY: IBM Corp.) The level of statistical 

significance was set at 0.05. However, for the association analyses of fat and muscle reserves and their 

mobilization with biochemical analytes, statistical significance had to account for multiple null 

hypotheses in order to minimize the true Type I and II errors. For this reason, the nominal P-value of 

0.05 was adjusted by the total number of separate statistical analyses conducted. In the present study, 

we ran 14 separate analyses of as many hypotheses and a correction based on the Holm-Bonferroni 

method (Holm, 1979) was used to adjust for multiple testing. Based on the above, the new level of 

statistical significance was adjusted to P = 0.004. 

 

Second Greek experiment (AUTH) 
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Following the discussions between partners involved in WP1 during the first annual meeting in 

Edinburgh, AUTH proposed to undertake an extra experiment, not foreseen in the DoA, that would 

explore the possibility of identifying an easy and non-invasive indicator of feed efficiency. Specifically, 

the objective of the second experimental study was to assess the potential use of milk composition 

traits as predictors of feed efficiency in Chios dairy ewes. It should be noted here that the proposed 

experiment was done using existing animal and feed resources of partner AUTH since as stated in the 

DoA (section 3.4 resources to be committed, and in particular 3.4.1 Other direct costs) no budget was 

foreseen for either purchase of animals or feeds for partner AUTH.    

 

 
Facilities, animals and study design 
The study was partially undertaken within the framework of the research project Legumes4Protein 

(Financed by the ERDF of EU and Greek funds through the Operational Program Competitiveness, 

Entrepreneurship and Innovation (RESEARCH-CREATE-INNOVATE: Τ1ΕΔΚ-04448) using animal and feed 

resources of that project which wasconducted in the facilities of the Veterinary Faculty of Aristotle 

University of Thessaloniki farm in Kolchiko Lagada, Greece. The duration was 60 days starting on the 

1st of February 2021 and ending on the 30th of March 2021. A total of 40 dairy ewes, representatives 

of purebred Chios breed, were selected for the study. In the third month of their first to fifth lactation 

period, selected animals were housed in two different pens (n=20 animals per pen). The two groups 

(Group A and B) were balanced for milk production after weaning and for the number of lactation 

periods. However, two animals in Group A died during the study, and hence, the total number of 

studied ewes was reduced to 38 (Group A, n=18 and Group B, n=20). 

Ewes were fed a pelleted concentrate diet (1.5 kg/animal day) together with Lucerne Hay (1.5 

kg/animal/day) and wheat straw (0.3 kg/animal/day). The pelleted concentrate diets in Groups A and 

B had different physical compositions; however, they were equal in terms of energy and protein 

supply. The physical and chemical compositions of the diets are provided in Tables 2 and 3, 

respectively. 

 

Table 2. Physical composition of the diets used in the study. 

Feeds (kg/animal/day) Group A Group B 

Lucerne Hay  1.50 1.50 
Wheat straw  0.30 0.30 
Corn  0.90 0.63 
Wheat bran  0.35 0.37 
Soybean  0.25 - 
Lupin  - 0.125 
Pea - 0.125 
Vetch - 0.125 
Fava bean - 0.125 

 

Table 3.  Basic chemical composition of the diets used in the study. 

Parameter Lucerne Hay Wheat straw Pellet 

DM (/kg)  0.85 0.88 0.87 
UFL (/kg DM)  0.57 0.37 1 
Crude protein (g/kg DM) 148 35 158.6 

 

Data collection  
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Data collection was performed in five-time points corresponding to study days 0, 15, 30, 45, and 60. 

Prior to milking, the body condition of each goat was assessed by palpation of the dorsal lumbar region, 

and a score (BCS) was recorded based on the 5-point scale (1-emaciated to 5-obese, in 0.25 point 

increments) proposed by Russel et al. (1969). Assessment of BCS was always performed by the same 

qualified veterinarian to eliminate inter-classifier variability. Then, individual ewe milk yield was 

recorded using electronic milk recording and a milk sample was collected in 50 ml tubes to assess milk 

composition; fat, protein, lactose, and solids-non-fat (SNF) content. Milk samples were transported to 

the laboratory in 4o C, and milk composition was determined with Near-Infrared Spectroscopy using a 

DA 7250 NIR analyser (PerkinElmer, Waltham, Massachusetts, USA). Finally, pellet and Lucerne Hay 

refusals from each group were collected, weighed, and recorded in a designated sheet, and the 

respective group feed intake was calculated. Individual feed intake was considered as the group feed 

intake divided by the number of ewes in the group. It should be noted here that data regarding feed 

efficiency phenotypes (feed intake and milk yield) were collected and analysed including milk 

composition traits exclusively to address the objectives set in the SMARTER project.    

 

Data handling 
Individual daily milk yield was calculated according to the official A4 method of the International 

Committee of Animal Recording (ICAR, 2016). Energy corrected milk yield (ECMY) for 6% fat was also 

calculated according to the following formula described by Tsiplakou et al. (2017): 

 

ECMY = [0.28 + 0.12 + Fat (%)] × Milk yield (kg) 

 

Moreover, pellet and Lucerne Hay group intakes were used to calculate the respective average 

individual animal intakes; an intake of 0.3 kg/day/ewe was assumed for wheat straw. Based on the 

above and the chemical composition of feeds provided in Table 3, individual energy intake was 

calculated. Then, individual feed efficiency was defined as the ECMY to energy intake ratio: 

 

Feed efficiency = ECMY (kg) / Energy intake (UFL) 

 

Statistical analysis 
Preliminary analyses were performed to identify significant effects on feed efficiency. The effects of 

group, sampling number (data collection time points during study days), lactation rank, milk yield after 

weaning, and BCS were tested. The association of each milk composition trait with feed efficiency was 

assessed with mixed linear models, which included all significant effects from the preliminary analyses: 

 

Yijmn = μ + Gi + Sj + b1*M + b2*B + b3*MC + Am + eijmn 

 

Where: 

 

Yijmn = feed efficiency (natural log, nth trait measurement on animal m);  

μ = overall population mean; 

Gi = fixed effect of group (two levels); 

Sj = fixed effect of sampling number (five levels); 

b1 = regression coefficient on milk yield after weaning (M); 

b2 = regression coefficient on BCS (B); 

b3 = regression coefficient on each milk composition trait (MC; fat, protein lactose, SNF content); 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  28 | 

123 

 

Am = random effect of the animal (m = 1-38 ewes); 

eijmn = random residual effect. 

 

All analyses were performed using the statistical package “lme4” in R programming language (Bates et 

al. 2015). The level of statistical significance was set at 0.05. 

 

5.1.2 On-farm designs 

1. France (Races de France) 

 

In France, the monitoring of the zootechnical performances of dairy ewes was carried out on the same 

commercial farms during two dairy campaigns: 2019-2020 and 2020-2021 [from September 2019 to 

September 2021]. Data description and analysis for the 2020-2021 dairy year are in progress; 

therefore, this report will be based on data from 2019-2020. 

Data were collected in 15 dairy sheep herds from 4 different breeds: 8 herds in Lacaune, 3 herds in 

Manech Tête Rousse, 2 flocks in Manech Tête Noire, and 2 flocks in Basco-Bearnaise. 

In the Western Pyrenean breeds (including Manech Tête Rousse, Manech Tête Noire, and Basco-

Bearnaise breeds), ewes in first or in the second lactation were phenotyped; whereas in the Lacaune 

breed, in the Roquefort area, all ewes were phenotyped whatever the lactation rank.  

The Smarter protocol is reported in figure 3. This protocol includes individual phenotypic 

measurements on the ewes and the recording of environmental data from the farms. The overall 

number of ewes involved is described in table 4 by breed and parity. 

 

 

Figure 3: SMARTER experimental protocol in French dairy sheep farms -  BCS : body condition score, 

ACF : automatic concentrate feeder, BHB : beta-hydroxybutyrate, MIR : mid-infrared spectrum 
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Table 4: Number of ewes by breed and parity included in the European SMARTER project 

             Parity 
 
Breed 

1 2 3 
4 and 
more 

Total 

Lacaune 1384 951 752 1429 4516 

Manech Tête Rousse 361 191 191 358 1101 

Manech Tête Noire 293 132 107 259 791 

Basco-Béarnaise 240 182 197 388 1007 

Sum 2278 1456 1247 2434 7415 

 

Body Condition Scores (BCS): 

Five BCSs were measured on each ewe, at key physiological stages: 30 days before lambing, at the end 

of suckling (30 days after lambing), at the first milk test-day (60 days after lambing), 30 days before 

mating and 30 days after mating. A maximal recording interval of 30 days was defined before and after 

each key physiological stages, i.e. 60 days, except for the end of suckling for which it was of 30 days 

after lambing (Figure 4). The data recorded within these intervals were assigned to the corresponding 

physiological stages. Data outside of these intervals were removed (Table 5). 

Moreover, ewes with no lambing and/or with reproductive abnormalities (e.g., no pregnant ewes or 

aborted ewes without lactation) and/or not mated ewes (which will be bred the following year) were 

removed from the dataset. 

 

Figure 4: SMARTER experimental protocol: BCS target physiological stages and selected intervals – 

in Orange = target physiological stages in the SMARTER protocol, in Blue = selected intervals around 

the target physiological stage 
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Table 5: Number of ewes phenotyped for BCS per breed and physiological stage  

1 3585 Lacaune ewes have at least the BCS before lambing 

 
A total of 7,415 ewes were measured, with 5,014 out of them having at least one BCS and milk rec-
ord, and 3,577 out of them had at least one feed efficiency value calculated. 
 
Two sets of data were defined for subsequent analyses. The first one consists of the 5,014 ewes 
(4,105 LAC; 355 MTR, 229 MTN, and 325 BB) with at least one BCS recorded in a previously defined 
time interval. The second sub-dataset consists of the 4,489 ewes (3,752 LAC; 338 MTR, 190 MTN, and 
209 BB) having at least two BCS recorded in the defined intervals. 
 
Imputation of the missing BCS was performed per farm for Western Pyrenean breeds and per farm 
and litter size (single/multiple) for Lacaune breed using the copyMean method.  
Similarly, missing BWs were estimated by the technicians similar to the reference values available in 
the literature per breed (55 kg for MTN and MTR, 65 for BB) and parity in the case of Lacaune ewes (70 
kg for primiparous and 75 kg for multiparous).  
 
 
Milk control: 

Dairy performances were individually measured with a target of a six-monthly test-day. The first milk 

test-day was performed approximately 50 days after lambing (Figure 3). For each test-day, milk yield 

protein content (PC), fat content (FC), somatic cell count and urea were recorded. 

Feeding: 

A feeding survey was conducted for each farm at each milk test-day in order to record the quality and 
quantities of feed distributed collectively in the herd (pasture, forage, concentrates) from the end of 
gestation to the end of exclusive milking. At each milk recording, the quality and quantities of concen-
trates distributed individually were recorded. Feed intakes were calculated from the feed distributed 

Body score 
condition 

Target 
physiological 
stage  
(in days to 
lambing) 

Intervals 
(in days to 
lambing) 

Lacaune 
(LAC) 

Manec
h Tête 
Rousse 
(MTR) 

Manec
h Tête 
Noire 
(MTN) 

Basco-
Béarnais
e (BB) 

BCS before lambing -30 -60 à 0 3,585 1 334 192 266 

BCS at suckling 30 0 à 30 3,149 208 141 162 

BCS at first milk 
test-day 

50 
30 à 80 3,438 220 89 129 

BCS before mating 180 150 à 210 3,386 310 167 105 

BCS after mating 240 210 à 270 2,762 181 53 30 

All BCS  
 

2,293 39 21 19 

Total number of 
different ewes 

4,171 339 229 325 
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in the collective feed (with a refusal rate of 10% and a correction for the growth of primiparous ewes) 
and the concentrates distributed individually in the milking parlour. 
The energetic and protein values of each feed were known by carrying out forage analyses or by taking 

reference values from INRAE tables or from technical organizations. The percentage of dry matter 

(DM), net energy/kg DM, and PDI / kg DM (proteins digestible by the intestine) values of each feed are 

available.  

Appendix 2 describes the feeding strategies encountered in the SMARTER herds. 

 

Computation of feed efficiency-related traits: 

Feed efficiency calculations were applied to the ewes having at least one BCS recorded. No individual 

total feed intake neither body weights were recorded, so RFI could not be calculated.  

We calculated the Net Energy Intake Converted in Milk Ratio (NEICMR) that had been proposed (P. 

Hassoun personal communication) to take into account that the total energy intake is not only for 

production but also for maintenance requirements and that energy could be stored or mobilized in the 

body reserves.: 

 

 

For NEICMR at the first milk recording, the difference between BCS at suckling and BCS at first milk 

test-day was used. For the last milk test-day (6), the difference between BCS before mating and BCS 

after mating was used. 

A NEICMR value lower than 1 means that the ewe is not efficient, the intake of the ration consumed 

for milk production (in net energy/d) is higher than the lactation needs of the animal (in net energy/d). 

Conversely, a value higher than 1 means that the ewe has not consumed more than necessary to cover 

her lactation requirements and/or mobilize her body reserves to produce milk.  

The variables of daily milk production, protein content, fat content, and amount of dry matter intake 

were filtered to +/- 3 standard deviations from the mean to remove extreme values.  

We also defined the coverage rate as the ratio between total intake of the ration (in net energy/day) 

divided by the total need of the animal (lactation, growth, and maintenance) (in net energy/day). 
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Three main limitations appear regarding NEICMR : 

- Primiparous ewes growth requirements are difficult to estimate. For this purpose, 0.09 net 
energy/d and 5 PDI/d were added to the maintenance requirements of primiparous ewes. This 
corresponds to the difference in requirements between a 60 kg ewe (weight of a Lacaune ewe 
before lambing) and a 70 kg ewe (weight of an adult Lacaune ewe) (Bocquier et al. 2019). 

- The farmers do not weigh distributed forages and refusals. Based on the expertise of techni-
cians, a 10% refusal rate was applied to all amounts of hay, silage, and haylage feed distributed 
(Bocquier et al. 2019). 

- Some data are missing, i.e., weights, forage intake, or are incomplete, i.e., BCS and milk yield. 
To compensate for these missing data, certain approximations can be made, but they must 
first be tested to evaluate the degree of imprecision generated. 
 

 
Analysis of factors influencing BCS at each physiological stage  
The BCSs of each physiological stage were analysed per breed according to model 1:  

(Model 1)  Yijklmn = µ + parityi + herdj + litter sizek + Day of measurementl + month of lambingm + 

siren + corrected milk yieldijklmn + corrected PCijklmn + corrected FCjklmn + eijklmn    

With Yijklmn is the BCS for the considered physiological stage; µ is the mean; the fixed effects in classes 

are the parity i (in 4 classes in Lacaune breed and 2 classes in Pyrenean breeds: 1/2), the herd j, the 

litter size k (single/multiple), the relative day of measurement l relative to lambing (3 classes of 20 days 

per interval of 60 d except for the BCS at suckling interval [0-30 d] with 3 classes of 10 days), the month 

of lambing m, the sire n. Effects of milk production (milk yield, FC, and PC) were added as covariates 

for the 3 BCS collected during lactation (at 1st milk recording, before and after mating). Finally, e is the 

residual error associated with each ijklmn observation. Daily MY, PC, and FC were previously corrected 

in a linear model for the effect of parity, litter size, month of lambing, days in milk, and the interaction 

between herd and milk recording date. 

The analyses of variance were carried out with the "car" package of the R software. An effect is 

considered significant if the p-value is < 0.05. 

 

Analysis of changes in body condition scores by physiological stage   
In order to evaluate the effect of physiological stages, BCS for all physiological stages were analysed 

using a linear mixed model (model 2) with repeated measures:  

(Model 2)  Yijklma = µ + lactation ranki + herdj + litter sizek + physiological stagel + month of lambingm 

+ duration-corrected milkijklma + adjusted standardized fat contentijklma + adjusted 

standardized protein contentijklma + animala + eijklma 

Where, Yijklma was the BCS of ewe at different physiological stages; µ is the mean; the fixed effects are 

defined in the same way as for model 1. The physiological stage l represents the BCS number in the 

SMARTER protocol (1/2/3/4/5). In order to take into account, milk production level for each 

physiological stage even outside the lactation period, the model included variables that accounted for 
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the overall level of production during lactation: duration-adjusted lactation milk was calculated from 

the following formula: (Lactation milk x (220 / Lactation duration + 60) x 1.3); adjusted standardized 

contents are the variables used for national genetic evaluation (Astruc, personal communication). The 

animal effect is the random effect of the ewe. The e is the residual error associated with each ijklmn 

observation. 

 The "lme4" and "lmerTest" packages of the R software were used to perform the mixed models 

on repeated measures. The use of the adjusted means estimated by the "emmeans" package and the 

Tukey adjustment will allow post hoc comparisons between groups, two by two, after adjusting the 

linear models. 

 

Classification of individual body condition score profiles 
The classification was carried out on ewes with at least two valid BCS. The objective was to categorize 

individual variability of BCS curves during a production cycle and characterize these curves. The R 

package "kml" for k-means longitudinal data (Genolini and Falissard, 2011; Genolini et al., 2015) 

allowed partitioning of longitudinal data using the k-means method, with the objective to maximize 

the inter-cluster variance and minimize the intra-cluster variance.  

Imputation methods to predict intermittent (in the middle of a trajectory) and monotonic (at the 

beginning or end of a trajectory) missing data are included in the kml package. The default method 

used was "copyMean", which combines trajectory-based (such as LOCF) and mean-based imputation 

methods. The kml method is iterative and allows for selecting a number of clusters (from 2 to 26). The 

optimal choice of the number of clusters to use was made based on three partitioning quality indices 

built on a scale from 0 to 1: the Calinsky-Hararasz3 index (Genolini et al., 2015), the Ray and Turi index 

(Ray and Turi, 2000) and the Davies Bouldin index (Bossard and Guimier de Neff, 2012).  

The repeatability and stability of clusters were tested by repeating the kml algorithm several times (~ 

20 times). The classification was only dependent on the five BCS, and the environmental factors were 

used to interpret the BCS profile clusters. Cluster numbers were analyzed with the GLM function of R 

software through logistic regression to characterize the ewes of each cluster (model 3):  

(Model 3)  Yij = parityi + litter sizej + duration-corrected milkij + milk persistencyij + eij 

Where, Yij is the cluster number; parity and litter size are fixed effects as defined in model 1; duration-

corrected milk is a covariate as described below, and milk persistency is a covariate and was calculated 

individually from the coefficient of variation over the ewe's milk test-days.  

In order to appreciate the importance of each factor in the partitioning of body condition profile 

classes, factors were removed one by one from the full GLM model, and the AICs (Akaike information 

criterion) were compared.  

 

5.2 Results 

1. France (INRAE) 

 

A- On the Lacaune ewes from MicroGenOL: 
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- SNP control: the quality control parameters used for the selection of SNPs were a minimum call rate 
of 90% for individuals and 99% for loci. Marker loci with minor allele frequencies (MAFs) lower than 
0.01. So, 45,923 SNPs were available for 795 phenotyped ewes. 
 
- Microbiota: From 16S, 2 059 OTUs corresponding to 9 536 442 sequences were identified on ruminal 

fluids collected for the 795 ewes.  

Discriminant analysis for both the SCS and PERS lines revealed very tiny differences, which suggested 

that genetic selection for udder health or milk production curves didn’t modify the abundance of 

rumen bacteria and the animal’s ability to digest their feed (Martinez-Boggio et al., 2021). 

Nevertheless, some abundant OTUs were linked with fine milk composition (figure 5).  

 

Figure 5: correlation matrix heatmap between bacterial taxa and milk traits 

A first group of taxa, represented mostly by propionic acid and proteolytic bacteria such as Prevotella, 
Suttonella, and Ruminococcus, appeared negatively linked with milk fatty acids and caseins. In contrast, 
a second group positively correlated with milk composition was composed of OTUs belonging 
Lachnospiraceae, Rikenellaceae and Christensenellaceae, bacteria that can promote the production of 
short- and medium-chain saturated fatty acids SFAs via butyric and acetic acid. 
 

B – On the subset of 54 Lacaune ewes: 

- Microbiota: From 16S, 1 801 OTUs corresponding to 2 631 966 sequences were identified on ruminal 

fluids collected for the 51 ewes the 3 consecutive years, that is to say, on average 17 000 sequences 

by sample. In the first approach with PCA analysis (figure 6), we identified a main “year” effect, which 

is a combination of confounding effects such as year, lactation rank, and partly run of sequencing since 

samples from 2017 and 2019 in one side and samples from 2018 in other side were sequenced in 2 

different runs. 
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Figure 6: PCA of OTUs abundances – plot of the 153 samples (51 ewes x 3 times) according to the 

year of sampling 

PCA didn’t allow to visualize differences between the ewes’ lines, but when looking at the alpha-

diversity, PERS- line seem to have a more divers microbiota than PERS+ line (figure 7).  

 

Figure 7: Boxplots of ewes’ ruminal microbiota α-diversity according to the lines PERS- / PERS+ 

- Metabolites: 174 NMR spectra of blood plasma and 174 spectra of rumen juice were analysed. Over 

the 3 years of the trial, relative abundances of 29 metabolites from the rumen and 75 metabolites from 

the blood were quantified.  

PCAs of metabolites abundances of blood plasma revealed a strong impact of the year of sampling, 

while no impact of year on the metabolite’s abundances in the ruminal juice (Figure 8). PCAs never 

revealed an impact of the PERS lines, either in ruminal juice, nor in the plasma.
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Figure 8: PCA of metabolites abundances (left from rumen juice – right from plasma) - plot of the 174 

samples according to the year of sampling 

With a variance analysis taking into account the year of sampling and the line as fixed effects, 7 

metabolites were significantly different according to the line (Table 6): PERS- line were characterized 

by a higher abundances of DehydroAscorbicAcid in blood and IsovalericAcid and Succinate in rumen 

juice, while PERS+ line have a higher abundances of EthylmalonicAcid, Methylamine, L.Ornithine and 

Threitol in blood. 

Table 6: significant PERS lines effect on metabolites abundances 

 Proba PERS- mean PERS+ mean 

Rumen juice    

  IsovalericAcid * 0.0334 0.0229 

  Succinate * 0.0065 0.0041 

Blood plasma    

  DehydroAscorbicAcid *** 0.0787 0.0294 

  EthylmalonicAcid ** 0.0347 0.0438 

  Methylamine * 0.0197 0.0231 

  L.Ornithine * 0.1189 0.1451 

  Threitol * 0.1529 0.1686 

*: Proba <5%; **: Proba <1%; ***: Proba <0.1% 

2. Spain (UNILÉON-CISC) 

 

Feed efficiency experiment 

Feed efficiency data in the lactation Assaf ewes experiment are given in Appendix 3. The distributions 

of RFI, REI, and FCR, generally conform to a normal distribution (figure 9). Regarding the basic statistics 

of FE parameters, the FCR show an average of 1.36 (SD =0.23), REI and RFI display an average of 0 (SD 

=0.91 for REI and SD=0.13 for RFI). 
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Figure 9: distribution of feed efficiency traits (RFI, REI and FCR) in Assaf ewes during lactation. 

 

Milk Fatty Acids: Association analysis with feed efficiency 

Spearman correlation coefficients were estimated between the milk FA and feed efficiency ratios (FCR 

and RFI). We identified 10 and 50 significant correlations (P-value < 0.05) between the FA included in 

this work and the RFI and FCR parameters, respectively (Tables 7 and 8). The significant correlations 

identified between the FA and the RFI parameters ranged from 0.323 to 0.481 (absolute values). 

Table 7: Significant spearman correlation coefficients estimated between the FA analysed and the RFI 
parameter. 

Fatty Acid Coefficient Pvalue 
6:0 -0.348 3.01E-02 

cis-9 10:1 -0.323 4.51E-02 

cis-9 15:1 -0.342 3.31E-02 

trans-9 16:1 -0.382 1.63E-02 

10-oxo-18:0 -0.351 2.83E-02 

cis-9 trans-12 18:2 -0.481 1.95E-03 

cis-9 trans-13 18:2 (coelutes with an 18:2 isomer of indeterminate double bond 
position) 

-0.360 2.43E-02 

cis-9 trans-14 18:2 (coelutes with an unidentified component) -0.424 7.16E-03 

trans-9 cis-12 18:2 -0.330 4.01E-02 

cis-9 trans-11 CLA -0.349 2.96E-02 

 

The significant correlations identified between the FA and the FCR parameter ranged from 0.318 to 

0.704 (absolute values). Comparing the results of both feed efficiency parameters, we identified three 

FA significantly correlated with both FCR and RFI indexes (“cis-9 trans-14 18:2 (coelutes with an uni-

dentified component)”, “trans-9 cis-12 18:2” and “trans-9 cis-11 CLA”). 

Table 8: Significant spearman correlation coefficients estimated between the FA analysed and the 
FCR parameter. 

Fatty Acid Coefficient Pvalue Fatty Acid Coefficient Pvalue 
7:0 0.403 1.09E-02 trans-10 18:1 -0.595 6.48E-05 

9:0 0.465 2.85E-03 trans-12 18:1 0.375 1.88E-02 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  3 | 

123 

 

10:0 0.436 5.48E-03 trans-15 18:1 0.466 2.78E-03 

11:0 0.539 3.99E-04 cis-11 cis-14 18:2 -0.377 1.79E-02 

12:0 0.553 2.58E-04 trans-9 cis-12 18:2 0.318 4.87E-02 

cis-9 12:1 0.429 6.49E-03 trans-11 cis-15 18:2 -0.570 1.51E-04 

trans-9 12:1 0.327 4.23E-02 trans-12 cis-15 18:2 -0.362 2.36E-02 

cis-7 14:1 0.376 1.85E-02 trans-10,trans-14 18:2 0.366 2.19E-02 

cis-12 14:1 0.418 8.03E-03 trans-8 cis-10 CLA -0.471 2.50E-03 

15:0 0.494 1.40E-03 trans-9 cis-11 CLA -0.478 2.08E-03 

anteiso 15:0 0.337 3.58E-02 trans-11 trans-13 CLA 0.479 2.05E-03 

cis-13 16:1 0.639 1.17E-05 18:3n-6 0.345 3.15E-02 

17:0 -0.585 9.11E-05 18:3n-3 0.458 3.35E-03 

iso 17:0  (coelutes with cis-7 
16:1) 

0.505 1.05E-03 
trans-9 trans-12 cis-15 
+ cis-9 cis-12 trans-15 
18:3 

0.527 5.68E-04 

cis-9 17:1 -0.610 3.78E-05 
cis-9 trans-11 trans-15 
CLnA 

0.365 2.23E-02 

iso 18:0 -0.384 1.59E-02 20:0 0.610 3.76E-05 

13-oxo-18:0 0.322 4.54E-02 
3,7,11,15-tetramethyl 
16:0 

0.356 2.61E-02 

16-oxo-18:0 -0.577 1.19E-04 cis-11 20:1 -0.492 1.48E-03 

cis-11 18:1 -0.434 5.77E-03 21:0 0.695 9.07E-07 

cis-12 18:1 0.521 6.75E-04 20:5n-3 0.393 1.33E-02 

cis-13 18:1 -0.428 6.63E-03 22:0 0.687 1.34E-06 

cis-16 18:1 0.630 1.74E-05 23:0 0.663 4.29E-06 

trans-4 18:1 -0.435 5.60E-03 24:0 0.704 5.71E-07 

iso 15:0 (contains trans-9 
14:1 as a minor component) 

0.399 1.19E-02 
cis-9 18:1 (+ trans-13 + 
14 18:1 as minor 
components) 

-0.544 3.45E-04 

cis-9 trans-14 18:2 (coelutes 
with an unidentified 
component) 

0.354 2.68E-02 

cis-9 trans-13 18:2 
(coelutes with an 18:2 
isomer of 
indeterminate double 
bond position) 

0.364 2.27E-02 

 

Furthermore, the regression analysis performed between the FA values and the feed efficiency param-

eters revealed a total of 13 and 38 significant associations (P-value < 0.05) between the FA included in 

this work and the RFI and FCR parameters, respectively. The R2 Adjusted values identified between the 

FA and the RFI parameter ranged from 0.079 to 0.194 (Table 9). In contrast, the R2 Adjusted values 

identified between the FA and the FCR parameter ranged from 0.076 to 0.313, slightly higher than the 

RFI results (Table 10). 

Table 9. Significant regression coefficients estimated between the FA analysed and the RFI parame-
ter. 

Fatty Acid R.Adj. P-value 
cis-7 14:1 0.079 4.65E-02 

15:0 0.146 9.44E-03 

anteiso 15:0 0.080 4.51E-02 

cis-9 17:1 0.085 4.03E-02 

10-oxo-18:0 0.171 5.14E-03 

16-oxo-18:0 0.079 4.56E-02 

cis-13 18:1 0.194 2.94E-03 

trans-10 18:1 0.148 8.96E-03 

cis-9 cis-12 18:2 (contains cis-9 cis-15 18:2 as minor component) 0.092 3.42E-02 
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trans-9 cis-11 CLA 0.081 4.44E-02 

20:2n-6 0.132 1.32E-02 

cis-13 22:1 0.078 4.73E-02 

23:0 0.107 2.37E-02 

 

The results of the regression analyses performed in both feed efficiency indexes revealed that 

seven out of the 101 FA analysed in this work were significantly associated with the RFI and the FCR 

parameters ("cis-7 14:1", "15:0", "cis-9 17:1", "16-oxo-18:0", "cis-13 18:1", "trans-10 18:1" and "trans-

9 cis-11 CLA"). This last FA (“trans-9 cis-11 CLA”) was also significantly correlated with both indexes, 

which points out the relevance of this FA in predicting the value of feed efficiency. 

 

Table 10. Significant regression coefficients estimated between the FA analysed and the FCR parame-
ter. 

Fatty Acid R.Adj. Pvalue Fatty Acid R.Adj. P-value 
7:0 0.081 4.43E-02 cis-16 18:1 0.313 1.29E-04 

9:0 0.119 1.79E-02 trans-4 18:1 0.183 3.89E-03 

11:0 0.182 3.92E-03 trans-10 18:1 0.261 5.28E-04 

12:0 0.153 7.90E-03 trans-12 18:1 0.129 1.42E-02 

cis-9 12:1 0.128 1.47E-02 trans-15 18:1 0.258 5.70E-04 

cis-7 14:1 

0.084 4.06E-02 

cis-9 trans-13 18:2 
(coelutes with an 
18:2 isomer of 
indeterminate 
double bond 
position) 

0.124 1.59E-02 

cis-12 14:1 0.113 2.09E-02 trans-11 cis-15 18:2 0.154 7.83E-03 

15:0 
0.172 5.09E-03 

trans-10,trans-14 
18:2 

0.116 1.92E-02 

iso 15:0 (contains 
trans-9 14:1 as a 
minor component) 

0.105 2.50E-02 
trans-9 cis-11 CLA 

0.143 1.03E-02 

17:0 
0.194 2.96E-03 

trans-11 trans-13 
CLA 

0.219 1.56E-03 

iso 17:0  (coelutes with 
cis-7 16:1) 

0.267 4.45E-04 
18:3n-6 

0.091 3.46E-02 

cis-9 17:1 0.264 4.83E-04 18:3n-3 0.150 8.48E-03 

iso 18:0 
0.104 2.53E-02 

trans-9 trans-12 cis-
15 + cis-9 cis-12 
trans-15 18:3 

0.157 7.34E-03 

16-oxo-18:0 
0.303 1.70E-04 

cis-9 trans-11 trans-
15 CLnA 

0.076 4.89E-02 

cis-9 18:1 (+ trans-13 + 
14 18:1 as minor 
components) 

0.159 6.93E-03 
cis-11 20:1 

0.155 7.63E-03 

cis-11 18:1 0.101 2.74E-02 20:5n-3 0.127 1.47E-02 

cis-12 18:1 0.203 2.33E-03 22:0 0.277 3.43E-04 

cis-13 18:1 0.117 1.87E-02 22:5n-3 0.132 1.31E-02 

cis-15 18:1 0.081 4.42E-02 24:0 0.294 2.14E-04 

 

Finally, the OPLS analyses revealed that the FA analysed were not significant for the RFI prediction but 

achieved a predictive performance of 0.82 for the FCR index. The VIP scores and P-values obtained 
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from OPLS analysis were extracted to identify those FA relevant for the quantitative prediction of the 

FCR (Figure 10). A total of 40 FA achieved a VIP score higher than one and a P-value lower than 0.05 

(Table 11). 

 
Figure 10: Representation of the variable importance in the projection (VIP) scores (Y-axis) and the p-
values (X-axis) obtained from OPLS analysis for the 101 FA analysed in relation with the FCR parameter. 

The total of 40 FA highlighted by the OPLS analysis is in agreement with the results presented by the 

Spearman correlation (Table 8) and regression analysis (Table 10) previously described with the FCR 

index (Table 11). These concordant results, especially between the regression analysis and the OPLS 

analysis, emphasize the role of the FA highlighted by both analyses in the prediction of the FCR index. 

 
 
 

Table 11: Variable Importance in the projection (VIP) and P-values estimated from OPLS-DA between 
the FA and the FCR parameter. 

Fatty Acid VIP P-value Fatty Acid VIP P-value 
9:0 1.161 1.79E-02 trans-10 18:1 1.561 5.28E-04 

11:0 1.375 3.92E-03 trans-12 18:1 1.392 1.42E-02 

12:0 1.225 7.90E-03 trans-15 18:1 1.674 5.70E-04 

cis-9 12:1 1.094 1.47E-02 cis-11 20:1 1.323 7.63E-03 

cis-7 14:1 
1.120 4.06E-02 

trans-11 cis-15 
18:2 1.145 7.83E-03 

cis-12 14:1 
1.022 2.09E-02 

trans-10,trans-
14 18:2 1.104 1.92E-02 

15:0 
1.314 5.09E-03 

trans-9 cis-11 
CLA 1.273 1.03E-02 

cis-13 16:1 
1.910 8.05E-05 

trans-11 trans-
13 CLA 1.673 1.56E-03 
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17:0 1.358 2.96E-03 18:3n-6 1.241 3.46E-02 

iso 17:0  
(coelutes with 
cis-7 16:1) 1.706 4.45E-04 

18:3n-3 
1.183 8.48E-03 

cis-9 17:1 
1.646 4.83E-04 

trans-9 trans-12 
cis-15 + cis-9 cis-
12 trans-15 18:3 1.255 7.34E-03 

iso 18:0 
1.217 2.53E-02 

cis-9 trans-11 
trans-15 CLnA 1.104 4.89E-02 

16-oxo-18:0 1.542 1.70E-04 20:0 1.931 8.44E-05 

cis-9 18:1 (+ 
trans-13 + 14 
18:1 as minor 
components) 

1.271 6.93E-03 

cis-9 trans-13 
18:2  (coelutes 
with an 18:2 
isomer of 
indeterminate 
double bond 
position) 1.245 1.59E-02 

cis-11 18:1 1.045 2.74E-02 21:0 1.864 4.06E-06 

cis-12 18:1 1.514 2.33E-03 20:5n-3 1.032 1.47E-02 

cis-13 18:1 1.084 1.87E-02 22:0 1.569 3.43E-04 

cis-15 18:1 1.108 4.42E-02 22:5n-3 1.071 1.31E-02 

cis-16 18:1 1.862 1.29E-04 23:0 1.838 2.30E-05 

trans-4 18:1 1.310 3.89E-03 24:0 1.542 2.14E-04 

 
 

Lastly, the ten most efficient and least efficient animals related to the RFI and FCR indexes were in-

cluded in the OPLS-DA to identify variables useful for discriminating both classes. The predictive per-

formance of the OPLS-DA analyses was 0.99 for the RFI index and 0.90 for the FCR index. The results 

of these analyses, depicted in Figure 11, strongly support the possibility of discriminating between 

these two groups (most and least feed efficient animals) using the 101 FA measured in this study, 

reinforcing the results obtained by the previous analyses. 

 

Figure 11.  Classification scores corresponding to the most (coloured in blue: 1) and least (coloured in 
red: 2) efficient animals included in the OPLS-DA concerning the RFI (left) and FCR (right) indexes 
studied in this work. 

Analysis of milk somatic cells transcriptome by RNA-seq ant its association with feed 
efficiency in Assaf sheep 
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To determine differences in gene expression between the different groups considered (high vs. low- 

feed efficiency (FE), and Nutritional Challenged (NC) vs. controls ewes) we performed RNASeq analyses 

on the milk somatic cell transcriptome from 28 animals from the whole population of 40 ewes used in 

the trial. RNA samples were selected based on the RIN quality (RIN > 7) and balanced between groups. 

The phenotypic values for the RFI, FCR of the ewes whose RNA was sequencing are summarized in 

appendix 4.  

After massive parallel RNA sequencing of the studied samples, an average of 34 million pair-reads was 

obtained for each animal. In the alignment stage, and considering the Oar_rambouillet_v2.0 reference 

genome, about 95% of the reads per sample aligned to unique locations of the ovine genome.  

Differential expression analysis using RFI as the phenotype for feed efficiency. 

For the differential expression analyses using RFI as a phenotype for FE, we selected 9 high-FE ewes 

(RFI=-0,12 (SD=0,07); 5 controls and 4 NC) and 10 low-FE ewes (RFI=0,1 (SD=0,08); 4 controls and 6 NC) 

from the extremes of the distribution. This selection excluded animals discordantly classified by RFI 

and FCR indexes. Based on the gene quantification results, a generalized principal component analysis 

(GLM-PCA) evaluated the distribution of the analyzed transcriptome samples. In this case, the first 

dimension (dim1) separated the high and low RFI groups almost perfectly, while samples seemed to 

be not grouped according to the nutritional challenge (Figure 12).  

 

 

Figure 12: Graphic representation of the generalized principal component analysis (GLM-PCA), based 

on the gene expression quantification analysis for the 19 RNA-Seq samples, was finally considered in 

the differential gene expression analysis based on RFI index for feed efficiency. 

In the differential expression analysis with DESeq2 and Model 1, 2 differentially expressed genes 

(DEGs) were identified between NC and control ewes. These genes were lncRNA (LOC114109620) and 
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KLK12. KLK12 encodes for Kallikrein-12, and the latter gene was previously found differentially 

expressed between two dairy sheep breeds, Churra and Assaf, showing differences in milk yield and 

milk composition (Suarez-Vega et al., 2015).  

In the comparison between high and low-FE animals, we found 1,938 DEGs (FDR <0.05). Of these, 952 

showed a higher expression in the high-FE group, and 986 showed a higher expression in the low-FE. 

After performing a functional enrichment analysis using WebGstalt software (Liao et al., 2019), one of 

the most biologically relevant GO terms enriched in the high-FE ewes was GO:0048732: gland 

development (35 genes; FDR=0.04) which includes, among others, relevant genes linked to milk protein 

and fatty acid synthesis (Table 12). 

Table 12: List of DEG enriched in the GO term GO:0048732: Mammary Gland Development. 

ID Gene Symbol  ID Gene Symbol 

AACS acetoacetyl-CoA synthetase  LRP5 LDL receptor related protein 5 
ACO2 aconitase 2  MGMT O-6-methylguanine-DNA 

methyltransferase 
AK4 adenylate kinase 4  MPST mercaptopyruvate sulfurtransferase 
ASS1 argininosuccinate synthase 1  MTX1 metaxin 1 
CDO1 cysteine dioxygenase type 1  NOTCH4 notch receptor 4 
CITED2 Cbp/p300 interacting transactivator with 

Glu/Asp rich carboxy-terminal domain 2 
 PBX1 PBX homeobox 1 

CSN2 casein beta  PITX1 paired like homeodomain 1 
CSN3 casein kappa  RTN4 reticulon 4 
CTC1 CST telomere replication complex 

component 1 
 SCRIB scribble planar cell polarity protein 

DBP D-box binding PAR bZIP transcription 
factor 

 SEMA3A semaphorin 3A 

ELF5 E74 like ETS transcription factor 5  SIX4 SIX homeobox 4 
ESR1 estrogen receptor 1  STAT5A signal transducer and activator of 

transcription 5A 
FASN fatty acid synthase  SULF2 sulfatase 2 
FPGS folylpolyglutamate synthase  THRA thyroid hormone receptor alpha 
GOT2 glutamic-oxaloacetic transaminase 2  THRB thyroid hormone receptor beta 
GPAT4 glycerol-3-phosphate acyltransferase 4  VDR vitamin D receptor 
HPN hepsin  XDH xanthine dehydrogenase 
IGFBP5 insulin like growth factor binding protein 

5 
   

 

In the comparisons performed using model 2 (Y=nutritional challenge+RFI+ nutritional challenge:RFI), 

we found 17 DEGs between high-FE and low-FE control ewes, 597 DEGs between high-FE and low-FE 

ewes from the nutritional challenge, 12 DEGs between NC and control high-FE sheep, and no 

differentially expressed genes between NC and control for the low-FE sheep. In Figure 13 the Venn 

Diagram shows the common genes found differentially expressed between the different comparisons 

performed with model 1 and model 2 where it is worthy of highlighting the DEGs found in common by 

three different comparisons. MPHOSPH10 gene, coding for M-Phase Phosphoprotein 10, was found 

differentially expressed in comparing high and low-FE animals for model 1 and high and low-FE animals 

subjected to the NC for model 2 with the DEGs found between NC and control for high-FE animals. This 
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gene has been found upregulated in mice subjected to time-restricted feeding, which exhibits 

protection from excessive weight gain and metabolic diseases (Chaix et al., 2019).  

Six genes (CNTFR, COPS9, LOC101107700, LOC114116088, PIK3CB, and TMEM238) were found 

differentially expressed in common for high vs. low-FE animals in model 1 and high vs. low-controls 

and high vs. low-NC animals in model 2. Among these DEGs, mutations in CNTFR have been selected 

to be included in a small SNP panel for FE in beef cattle (Abo-Ismail et al., 2018). In addition, functional 

variants in PIK3CB gene have been proposed for FE in dairy cattle (Lam et al., 2021). Lastly, COPS9 

transcription factor has been highlighted as a central regulator in a study for FE in pigs (Ramayo-Caldas 

et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Venn Diagram showing the differentially expressed genes found in the comparisons for 

model 1 (High vs. Low feed efficiency (HighvsLowFE) and Nutritional Challenge (NC) vs. Control (NC 

vsControl)) and model 2 (in the NC animals High vs. Low feed efficiency ( LvsH_FE_NC), in the 

controls High vs. Low feed efficiency (LvsH_FE_Control, and in the high-feed efficiency animals, NC 

vs. Control (NCvsControl_HighFE). 

Differential expression analysis using FCR index as the phenotype for feed efficiency. 
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For the differential expression analysis using FCR index as phenotype for FE we used 8 high-FE ewes 

(FCR=1.14 (SD=0,1); 4 controls and 4 NC) and 11 low-FE ewes (FCR=1.52 (SD=0,17); 5 controls and 6 

NC) from the extremes of the distribution. As for RFI analyses, this selection excluded animals 

discordantly classified by RFI and FCR indexes. The distribution of the RNA-Seq samples is shown in the 

GLM-PCA represented in Figure 14. As could be appreciated, the first dimension differentiates high 

and low-FE ewes. At the same time, the controls and NC are not well differentiated, having NC animals 

a higher variability.  

 

Figure 14: Graphic representation of the generalized principal component analysis (GLM-PCA), based 

on the gene expression quantification analysis for the 19 RNA-Seq samples, was finally considered in 

the differential gene expression analysis based on the FCR index for feed efficiency. 

We found 3 DEGs between NC and control ewes using model 1. As in the differential expression 

analysis using RFI, KLK12 was one of the genes differentially expressed. In addition, we found 

differentially expressed another kallikrein protein (KLK6), suggesting a relevant role of these proteins 

for the NC, and the hemoglobin beta gene (HBB), which has been previously related to FE in cattle 

(Paradis et al., 2015). 

For the differential expression analysis between high and low-FE ewes, we found 3,008 DEGs (1,426 

upregulated in high-FE and 1,582 upregulated in low-FE; FDR<0.05) 1,561 DEGs in common with the 

previous analyses in which RFI index was used as phenotype for FE. Among the DEGs between high 

and low-FE ewes using FCR as the feed efficiency phenotype, it is worthy of highlighting that the highest 

enriched GO term in the low-FE animals was GO:0009408: response to heat (37 DEGs; FDR=2.6551e-

9), figure 15 shows the differences in expression between high and low-FE animals for 6 of these 

proteins. A study in pigs has proposed that less efficient animals can have a greater heat production 

related to physical activity and basal metabolic rate (Barea et al., 2010), and other studies in the same 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  11 | 

123 

 

species found positive correlations between correlated modules of genes and RFI and FCR traits 

suggesting that less efficient animals have higher expression of heat-related proteins (Ramayo-Caldas 

et al, 2018).  

 

Figure 15: Plot showing gene expression for 6 differentially expressed genes linked to GO:0009408: 

response to heat found upregulated in low-feed efficiency ewes using RFI index as a phenotype for 

feed efficiency.  

 

When using model 2 (Y=nutritional challenge+RFI+ nutritional challenge:RFI) for differential expression 

analyses, we found 1,016 DEGs between high and low-FE animals for controls, 439 DEGs between high 

and low-FE animals for NC, 5 DEGs between control and NC for high-FE ewes and non DEG for the 

comparison between control and NC for low-FE ewes. In total, 125 DEGs were found in common when 

high and low-FE control and high and low-FE NC ewes were compared; these genes were also found 

differentially expressed for FE with model 1. Among these DEGs, it is worthy of highlighting a list of 24 

genes upregulated in the high-FE ewes and grouped under the GO term GO:0044281:small molecule 

metabolic process (24 DEGs; FDR=0.02; Table 13). Among them, there are genes related to fat and 

protein synthesis, suggesting that high-FE animals upregulated genes have an important implication in 

milk production.  

 

Table 13: List of DEG enriched in the GO term GO:0044281:small molecule metabolic process. 
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ID Gene Symbol  ID Gene Symbol 

SCD stearoyl-CoA desaturase  RORC RAR related orphan receptor C 

IDH1 isocitrate dehydrogenase  GMDS GDP-mannose 4,6-dehydratase 

PEMT phosphatidylethanolamine N-
methyltransferase 

 TKFC triokinase and FMN cyclase 

FOLR2 folate receptor beta  PYCR1 pyrroline-5-carboxylate 
reductase 1 

XDH xanthine dehydrogenase  PYCR3 pyrroline-5-carboxylate 
reductase 3 

GCAT glycine C-acetyltransferase  COMT catechol-O-methyltransferase 

MACROD1 mono-ADP ribosylhydrolase 1  LRP5 LDL receptor related protein 5 

LDHD lactate dehydrogenase D  NDUFS6 NADH:ubiquinone 
oxidoreductase subunit S6 

AGPAT1 1-acylglycerol-3-phosphate O-
acyltransferase 1 

 NDUFB10 NADH:ubiquinone 
oxidoreductase subunit B10 

GPT2 glutamic--pyruvic transaminase 2  TKT transketolase 

ALDH2 aldehyde dehydrogenase 2 family 
member 

 SIRT5 sirtuin 5 

GAMT guanidinoacetate N-methyltransferase  SUCLG1 succinate-CoA ligase alpha 
subunit 

 

Performance of transcriptomic data to prediction RFI and FCR indexes using Random Forest  

Once detected the DEGs, we evaluated the potential of gene expression to predict FE traits. The 

predictive models were constructed using two lists as features for the prediction: on one side, the 

1,017 consensus-DEGs obtained in the differential expression analyses and, on the other side, the 45 

genes in common with a previous study evaluating FE using the milk transcriptome (reduced-

consensus-DEGs). In general, better performance was shown for the reduced-consensus-DEGs (median 

SC of 0.37 (FCR) and 0.22 (RFI), and RMSE of 0.16 and 0.11 for FCR and RFI, respectively) than for the 

whole set of consensus-DEGs (median SC of 0.27 (FCR) and 0.09 (RFI), and RMSE of 0.18 and 0.08 for 

FCR and RFI, respectively) (Figure 16) 

 

Figure 16. Boxplots representing the Spearman correlation (A) and RMSE (B) values obtained in the 

prediction of individual RFI (orange) and FCR (red) indexes using transcriptomic features and the 

Random Forest algorithm. The X-axis shows the different features used: total differentially expressed 

genes (DEGs) or reduced consensus genes (redGEGs). 
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Association of milk metabolomics with FE in Assaf sheep  

The PLS-DA analysis displays a high potential of the raw milk metabolomic signature to discriminate 

the high, medium, and low FE animals for both RFI and FCR metrics (Figure 16). The AUCs obtained for 

the discrimination among the H-RFI, L-RFI, and M-RFI groups and the other groups were 0.969, 0.951, 

and 0.992, respectively. In addition, for FCR, the AUCs obtained for the discrimination among H-FCR, 

L-FCR, and M-FCR groups and the other groups were 0.976, 0.987, and 0.981, respectively. The mean 

error rate and Q2 metrics for the RFI groups were 0.621 and 0.379, respectively, while those for the 

FCR groups were 0.426 and 0.574, respectively. Therefore, all three groups were well discriminated for 

RFI and FCR. For the reduced set of features, 41 and 26 features with VIP>2 were selected for RFI and 

FCR, respectively (Supplemental Table 4, https://zenodo.org/record/8154651). 

 

Figure 17. Clustering performance of high, medium, and low groups for RFI (A) and FCR (B) obtained 

by applying partial least squares discriminant analysis (PLS-DA). The ROC curves show the area under 

the curve (AUC) obtained for discriminating between one group and the others using the first two 

principal components. 

Performance of milk metabolomics to predict individual FE  

https://zenodo.org/record/8154651
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In general, the predictions for FCR outperformed the predictions for RFI. Higher means of r2 (Pearson 

correlation) and CCC were observed for FCR predictions in all scenarios (Table 14). On the other hand, 

a larger mean RMSE was obtained for FCR in all scenarios. However, it is important to highlight that 

RMSE should not be directly compared between the metrics, as RFI and FCR have different 

distributions and scales. In the scenario where all the features were used for prediction, the highest r2 

for FCR was obtained using OPLS (0.62±0.06), while that for RFI was obtained using RF (0.08±0.10). 

Regarding RMSE, the smallest mean for FCR was obtained using SVM (0.14±0.03) and that for RFI using 

xgboost (0.14±0.02). An interesting result was obtained for the predictions performed using the subset 

of features selected during the PLS-DA analysis for RFI and FCR. Regarding the CCC (concordance 

correlation coefficient) values, in all the scenarios where all the features were used for RFI prediction, 

means close to zero were obtained, while in the RFI predictions using the 41 features selected based 

on VIP>2 resulted in substantially higher CCC means (Table 14). The exception was the scenario where 

OPLS was used to predict RFI with the subset of 41 features, which also resulted in a mean close to 

zero (-0.04). The 41 features selected for RFI (VIP>2) provided better predictions (higher r2) for RFI in 

all the models, excluding OPLS. The highest r2 mean for RFI using the 41 features was obtained using 

the deep model (0.18±0.14). Similarly, for FCR, only SVM was not outperformed by the predictions 

performed using the 26 features selected in the PLS-DA analysis for FCR groups. The mean r2 and CCC 

for all features using SVM were 0.58±0.15 and 0.67±0.10, while using the 26 features, the r2 and CCC 

means were 0.51±0.17 and 0.61±0.11, respectively. It is important to highlight that for the predictions 

performed using OPLS, the reduced dataset performed exactly (for r2, CCC, and RMSE) as the raw milk 

metabolomic signature. The highest r2 means obtained using ML models for FCR predictions based on 

the 26 features was with the xgboost algorithm (0.55±0.15). On the other hand, higher CCC means 

were obtained for RF and OPLS, 0.68±0.11 and 0.68±0.10, respectively. These results summarized 

before are detailed in a manuscript (Marina et al., under review). 

Table 14: Summary statistics (mean±standard deviation (sd) for the squared Pearson correlation (r2), 

concordance correlation coefficient (CCC), and root mean squared error (RMSE) values obtained for 

the predictions of residual feed intake (RFI) and feed conversion ratio (FCR) using the raw milk 

metabolomic signature (all) and the reduced feature datasets selected based on Variable Importance 

in the Projection (VIP) obtained in the PLS-DA analysis. 

Model 
r2 CCC RMSE 

RFI 
Mean±sd 

FCR 
Mean±sd 

RFI 
Mean±sd 

FCR 
Mean±sd 

RFI 
Mean±sd 

FCR 
Mean±sd 

Deep_all 0.08±0.11 0.43±0.18 -0.05±0.20 0.54±0.17 0.17±0.04 0.18±0.04 

RF_all 0.08±0.10 0.48±0.20 0.01±0.14 0.53±0.14 0.15±0.02 0.17±0.04 

SVM_all 0.06±0.06 0.58±0.15 -0.01±0.15 0.67±0.10 0.16±0.02 0.15±0.03 

xgboost_all 0.07±0.08 0.43±0.20 0.01±0.15 0.51±0.17 0.14±0.02 0.18±0.04 

OPLS_all 0.04±0.06 0.62±0.06 -0.04±0.14 0.68±0.10 0.16±0.02 0.14±0.03 

Deep_VIP 0.18±0.14 0.46±0.16 0.28±0.20 0.58±0.14 0.14±0.02 0.19±0.03 

RF_VIP 0.11±0.15 0.52±0.18 0.17±0.17 0.68±0.11 0.14±0.02 0.16±0.03 

SVM_VIP 0.16±0.14 0.51±0.17 0.30±0.20 0.61±0.11 0.15±0.03 0.18±0.03 

xgboost_VIP 0.17±0-15 0.55±0.15 0.24±0.19 0.67±0.10 0.13±0.02 0.16±0.02 

OPLS_VIP 0.04±0.14 0.62±0.15 -0.04±0.14 0.68±0.10 0.16±0.02 0,14±0.03 

ML models: Deep: Multi-layer feedforward artificial neural network, RF: Random Forest, SVM: Support Vector 

Machine, xgboost: Extreme Gradient Boosting, OPLS: Orthogonal Partial Least Square. 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  15 | 

123 

 

Predictive accuracy of DMRs between high and low FE animals using ML algorithms 

The predictive performance of DMRs to predict individual RFI and FCR was tested using three ML 
algorithms. For this purpose, 100 rounds of random assignment of animals in the training and test 
datasets were compared. Similar performance was obtained across ML algorithms and FE datasets 
(Table 15). The smallest mean RMSE (0.17) was obtained for mRFI_RFI, mCons_RFI, and mRFI_RFI + 
VARs using RF and mRFI_RFI + VARs using xgboost. Regarding the mean r2, the largest observed value 
(0.20) was obtained for mCons_RFI + VARs and mCons_FCR + VARs using deeplearning. The highest 
ratios were obtained for mCons_RFI + VARs (RMSE=0.07, r2=0.62) using RF and mRFI_RFI using xgboost 
(RMSE=0.10, r2=0.86). In addition, the highest correlation between the actual and predicted values was 
obtained in the mCons_FCR scenario using xgboost (r2=0.93). On the other hand, the lowest correlation 
in the best model was obtained in the mCons_RFI scenario using deeplearning (r2=0.37). These results 
are being compiled in a manuscript (Fonseca et al., in preparation). 
 
Table 15: Mean (±standard deviation) for the root mean squared error (RMSE) and mean squared 
Pearson correlation (r2) obtained in the 100 rounds of random assignment of ewes in training and test 
datasets for each machine learning model to predict residual feed intake (RFI) and feed conversion 
ratio (FCR). 

Prediction* 
deepleaning RF xgboost 

RMSE r2 RMSE r2 RMSE r2 

mRFI_RFI 0.20±0.05 0.18±0.22 0.17±0.03 0.14±0.16 0.18±0.03 0.16±0.20 

mFCR_FCR 0.35±0.10 0.14±0.18 0.31±0.07 0.15±0.17 0.35±0.07 0.14±0.17 

mCons_RFI 0.19±0.08 0.16±0.19 0.17±0.03 0.17±0.21 0.18±0.02 0.16±0.16 

mCons_FCR 0.35±0.11 0.18±0.20 0.31±0.08 0.14±0.17 0.34±0.08 0.17±0.21 

mRFI_RFI + VARs 0.25±0.15 0.18±0.22 0.17±0.03 0.15±0.16 0.17± 0.03 0.11±0.15 

mFCR_FCR + VARs 0.59±0.41 0.19±0.20 0.31±0.09 0.14±0.14 0.35± 0.07 0.18±0.20 

mCons_RFI + VARs 0.24±0.08 0.20±0.23 0.18±0.04 0.17±0.19 0.18± 0.03 0.18±0.20 

mCons_FCR + VARs 0.44±0.13 0.20±0.22 0.30±0.08 0.13±0.15 0.33± 0.08 0.15±0.20 

*mRFI_RFI: Mean methylation within DRMs identified comparing RFI groups used to predict RFI; mFCR_FCR: Mean 
methylation within DRMs identified comparing FCR groups used to predict FCR; mCons_RFI: Mean methylation within DRMs 
identified comparing Consensus groups used to predict RFI; mCons_FCR: Mean methylation within DRMs identified 
comparing Consensus groups used to predict FCR; mRFI_RFI + SNPs: Mean methylation within DRMs identified comparing RFI 
groups plus SNPs within the same DMRs used to predict RFI; mFCR_FCR + SNPs: Mean methylation within DRMs identified 
comparing FCR groups plus SNPs within the same DMRs used to predict FCR; mCons_RFI + SNPs: Mean methylation within 
DRMs identified comparing Consensus groups plus SNPs within the same DMRs used to predict RFI; mCons_FCR + SNPs: Mean 
methylation within DRMs identified comparing Consensus groups plus SNPs within the same DMRs used to predict FCR. 

 

3. Greece (Univ Thessaloniki) 

First experiment 
 
Association of body composition traits measured with ultrasonography as potential predictors of 
negative energy balance 
Significant (P<0.05) optimal cutoffs for changes in body composition traits as predictors of negative 

energy balance status are presented in Table 16. Results showed that a NEFA status of more than 0.3 
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mmol/L could be predicted by a decrease in BFT and the sum of BFT and LDT of more than 0.075 mm 

and 0.350 mm, respectively. Likewise, a NEFA status of more than 0.7 mmol/L could be predicted by a 

decrease in BFT in LDT and their total sum of more than 0.15 mm, 0.065 mm, and 0.350 mm, 

respectively. No significant (P>0.05) cutoffs for predicting elevated BHB status were reported. 

 

Table 16: Optimal cutoffs for body composition traits measured with ultrasonography to predict 

negative energy balance status (elevated non-esterified fatty acids (NEFA) status).  

NEFA status Trait Cutoff AUC 95% CI P-value Se Sp 

NEFA (≥0.3 mmol/L)  ΔBFT (mm) -0.075 0.664 0.591-0.736 <0.001 81.3 52.3 

  ΔTotal (mm) -0.350 0.622 0.550-0.694 0.001 75.0 45.8 

NEFA (≥0.7 mmol/L)  ΔBFT (mm) -0.150 0.649 0.544-0.753 0.003 80.9 51.2 

  ΔLDT (mm) -0.065 0.611 0.514-0.708 0.021 61.3 63.4 

  ΔTotal (mm) -0.350 0.643 0.547-0.739 0.004 70.1 56.1 

AUC=area under the curve; Se=sensitivity; Sp=specificity; ΔBFT=change in back fat thickness; ΔLDT=change in 

longissimus dorsi muscle thickness; ΔTotal=change in the overall combined values of back fat and longissimus 

dorsi muscle thickness. 

 

Association of blood biomarkers as potential predictors of fat and muscle reserves and their mobi-
lization 
Estimates on the association of studied blood biomarkers with fat and muscle reserves and their 

mobilization are presented in Table 17. A nominally significant (P<0.05) positive association of serum 

albumins with LDT was reported. Specifically, a change of serum albumins by 1 g/dL was associated 

with a change in LDT by 1.27 mm. Such an association could be explained by the fact that serum 

albumins and LDT are both deposits of amino acids in the muscle tissues. However, this association did 

not maintain significance after Holm-Bonferroni correction (P>0.004). 

 

  Table 17: Association of blood biomarkers with fat and muscle reserves and their mobilization. 

Trait Blood biomarker Estimate (β) SE P-value 

BFT (mm) NEFA (mmol/L) -0.089 0.105 0.402 
 BHB (mmol/L) -0.013 0.586 0.819 

ΔBFT (mm) NEFA (mmol/L) -0.186 0.127 0.142 
 BHB (mmol/L) -0.041 0.047 0.391 

LDT (mm) NEFA (mmol/L) 0.641 0.504 0.205 

 BHB (mmol/L) 0.216 0.216 0.321 

 TP (g/dL) -0.309 0.158 0.052 

 Alb (g/dL) 1.271 0.501 0.012 

 BUN (mg/dL) 0.015 0.018 0.403 

ΔLDT (mm) NEFA (mmol/L) 0.538 0.546 0.326 

 BHB (mmol/L) -0.102 0.273 0.711 

 TP (g/dL) -0.067 0.117 0.567 

 Alb (g/dL) -0.053 0.280 0.851 

 BUN (mg/dL) 0.014 0.016 0.395 
BFT= back fat thickness; ΔBFT= change in back fat thickness; LDT= longissimus dorsi muscle thickness; ΔLDT= 

change in longissimus dorsi muscle thickness; NEFA= non-esterified fatty acids; BHB= β-hydroxybutyrate; TP= 

total proteins; Alb= albumins; BUN= urea nitrogen. 
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Conclusions 
Results obtained in the present study suggest that changes in body composition traits measured with 

ultrasonography, specifically the decrease in backfat and longissimus dorsi muscle thickness, could be 

used to predict negative energy balance status in non-lactating dairy ewes. Moreover, there was an 

association between the concentration of serum albumins and muscle reserves, although it was not 

statistically significant (after Holm-Bonferroni correction). Further research with a higher sample size 

could help to further investigate the latter association. 

 

Second experiment (AUTH) 

Quality control of production records from the second experiment was implemented based on 

biological limits set to reflect the real productive profile and capacity of the studied breeds. These 

limits set 6 records of milk protein content (protein content less than 3%) and 9 records of daily milk 

yield (less than 0.2 kg according to ICAR recommendations) as missing values. Moreover, 18 records of 

milk composition traits were not estimable and were also set as missing values. Finally, given that feed 

efficiency records were significantly skewed, the trait was logarithmically transformed (natural log), 

and two outliers were removed to ensure normality of distribution. Descriptive statistics of the edited 

data are shown in Table 18. 

 

 Table 18: Descriptive statistics of recorded data after quality control. 

Trait N Mean SD min max 

Daily milk yield (kg) 183 1.2 0.53 0.2 3.54 

Energy corrected milk (kg) 181 1.28 0.55 0.21 3.29 

Fat content (%) 181 6.59 1.38 3.02 10.8 

Protein content (%) 175 5.35 0.81 3.06 7.52 

Lactose content (%)  181 4.67 0.35 3.61 5.4 

SNF content (%) 181 11.62 0.98 6.17 13.88 

BCS (1-5) 190 2.89 0.22 2.25 3.5 

Daily pellet intake (kg) 190 1.34 0.13 1.13 1.5 

Daily hay intake (kg)  190 1.13 0.23 0.83 1.73 

Daily straw intake (kg)  190 0.3 0 0.3 0.3 

Energy intake (UFL) 190 1.82 0.18 1.59 2.24 

Feed efficiency  181 0.71 0.31 0.12 1.97 

Feed efficiency (ln)  179 -0.43 0.44 -1.64 0.68 
SNF= solids-non-fat; BCS= body condition score 

 

Estimates on the association of milk composition traits with feed efficiency are presented in Table 19. 

Statistically significant positive associations (P < 0.05) were reported with fat and lactose content. 

Specifically, one unit increase of fat and lactose content was associated with an increase in feed 

efficiency by 8.7% and 21.7%, respectively.  

 

Table 19. Association of milk composition traits with feed efficiency on the natural log scale. 

Trait Estimate (β) SE P-value 

Fat content 0.083 0.020 0.0004 

Protein content 0.069 0.050 0.1679 
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Lactose content 0.196 0.080 0.0146 

SNF content 0.0001 0.027 0.9965 

SNF= solids-non-fat 

 

Conclusions 
Results obtained in the present study suggest that Chios dairy ewes with higher milk fat and lactose 

contents utilize energy intake more efficiently. In this regard, these milk composition traits could be 

used by farmers as an easy, non-invasive way for selecting towards increased feed efficiency. Further, 

research with higher sample size and individual animal housing for precise feed intake recording could 

help to further support the findings of our study.    

 

4. France (Races de France) 

 
Main results regarding the Lacaune breed has been published in Machefert et al., 2023. 
 
Zootechnical performances 
The average zootechnical performances (milk and mating performances), as well as the feeding, are 
summarized in Table 20 per breed, distinguishing between primiparous (L1) and multiparous in 2nd 
lactation (L2). On average, 3.9 milk test-days were recorded for ewes from the Western Pyrenean 
breeds and 5.2 for Lacaune ewes, with most Lacaune ewes having 6 milk recordings.  
 

Table 20: Average and variability of zootechnical performances according to breed for dairy ewes in 

parity 1 (L1) and 2 (L2) phenotyped in Smarter in 2019-2020 

 

 

 

 

Feed 
effi-

ciency by net 
energy intake 

con-
verted in milk 
ratio  

Because some data are missing, we evaluated the ability to approximate different components of feed 

efficiency: BCS, forage intake, and standardized milk production. From our tests (Appendix 5), we 

identified that the phenotypes contributing the most to the calculation of individual feed efficiency 

 Lacaune 
Manech Tête 
Rousse 

Manech Tête 
Noire 

Basco-
Béarnaise 

Parity L1  L2 L1 L2 L1 L2 L1 L2 

Number of ewes 1,119 892 203 152 125 104 197 128 

% of the herd 31 21 33 17 37 17 24 18 

Total milk 
production of the 
lactation (L) 

309 383 238 253 196 197 127 199 

Milk production 
at the fisrt milk 
recording (L) 

2.45 2.97 1.98 2.31 1.77 2.07 1.97 2.19 

Lactation length 
(d) 

170 187 179 182 155 147 106 148 

Fertility at animal 
insemination (%) 

76 75 84 76 47 50 75 53 

Prolificity at 
animal 
insemination 

1.50 1.55 1.46 1.39 1.29 1.53 1.23 1.35 

Dry matter intake 
at the first milk 
recording (kg) 

2.76 2.76 2.30 2.30 2.32 2.33 2.23 2.23 
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were, in decreasing order of importance: 1) standardized milk production, 2) forage intake, 3) body 

condition scores, and 4) weights. 

The results of feed efficiency estimated by the NEICMR  were on average higher in the Roquefort area, 

i.e., for the Lacaune breed.  Results are detailed in Appendix 6 according to the stage of lactation.  

In the Lacaune breed, most animals have a result of feed efficiency lower than 1 (Figure 18). Feed 

efficiency seems to decrease during lactation. Two phases can be observed: the first one from lactation 

stage 2 to 5 where feed efficiency results are mainly between 0.75 to 1.13, then from lactation stage 

6 where results decrease more from 0.6 to 0.75. The low feed efficiency results from lactation stage 6 

onwards could be explained by the integration of grazing in the rations for all Lacaune farms. Grazing 

may start earlier in lactation, but the ewes will be grazing from the 6th month of lactation. Also, the 

greater variability of results above 1.25 could be explained by the integration of grazing in the ration, 

which introduces an additional bias in estimating individual feed consumption on pasture. 

In the Pyrenean breed, the majority of females have a feed efficiency value lower than 1. In the Manech 

Tête Rousse breed, we observe the opposite phenomenon to the Lacaune ewes, where feed efficiency 

seems to increase during lactation. The low numbers must be taken into account when interpreting 

the results for BB and MTN breeds. 

 

 

Figure 18: Estimated feed efficiency according to the stage of lactation (months since lambing) and 

according to the breed of dairy ewes 
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Correlations between two successive lactation stages range from 0.24 to 0.60 for Lacaune ewes and 

0.17 to 0.63 for Western Pyrenean ewes (Table 21). Correlations are weaker between feed efficiency 

scores from more distant stages of lactation. However, we observe the strongest correlations between 

lactation stages 3, 4, 5, and 6 in the Lacaune breed and lactation stages 2, 3, 4, and 5 in the Pyrenean 

breeds. 

 

Table 21: Correlation between feed efficiency results calculated from the net energy intake converted 

in milk ratio, between stages of lactation (in months) for Lacaune ewes (above the diagonal) and 

Western Pyrenean area (under the diagonal) 

 Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month 7 Month 8 

Month 1  0.36 0.31 NS NS NS NS . 

Month 2 0.63  0.42 0.28 0.20 0.24 0.28 0.42 

Month 3 0.40 0.50  0.60 0.51 0.51 0.09 0.15 

Month 4 NS 0.40 0.24  0.44 0.50 0.12 NS 

Month 5 0.37 0.35 0.31 0.44  0.47 0.10 NS 

Month 6 0.58 0.21 0.22 NS 0.47  0.24 0.16 

Month 7 NS NS 0.14 0.21 0.17 0.17  0.37 

Month 8 . NS NS NS NS NS 0.26  

NS : Not Significant  

Correlations between the estimated feed efficiency results and the milk performances (daily milk 

production, lactation milk yield, fat content, protein content, somatic cell count, urea, lactation length 

and persistence) for the Lacaune ewes are low (from -0.18 to 0.26) except for the daily milk production 

where the correlation is 0.5. 

The Pearson correlation between the net energy coverage rate per day and the estimated feed 

efficiency is -0.93. The relationship between both variables shows that less efficient ewes tend to have 

a coverage rate above 100%. These ewes would ingest more feed than necessary to cover their 

maintenance and lactation needs. Ewes that can be qualified as efficient have a coverage rate lower 

than 100%, so the energy intake of the ration is insufficient to cover their needs. A ewe with a feed 

efficiency of 1 will have a coverage rate of 100%. The range of coverage data for a ewe with low 

efficiency is higher than for ewes with an efficiency of more than 1. However, it should be taken into 

account that there are fewer ewes with an efficiency greater than 1.  

 
BCS 
The variability of BCS is described in Table 22. BCS in Lacaune breed ranged from 2 to 4 with similar 

standard deviations between physiological stages. The variability of BCS was lower in the Pyrenean 

breeds than in Lacaune, with a lower level of body condition (-0.25 to -0.5 BCS points). The same 

observations were made for all Pyrenean breeds. 
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Table 22: Mean, standard deviation (sd), minimum, maximum, and coefficient of variation (CV) of BCS 

by area 

 

Correlations between successive BCS were positive and high between the first three BCSs collected at 

the beginning of lactation (from -30 to +80 days) and between the last two BCSs (± 1 month around 

the mating time) (Figure 19). The lower correlation between the BCS at first milk test-day and the one 

before mating was related to the higher time interval (134 days on average) between these two time-

points. The closer the BCS measurements are in time, the less possibility of BCS evolution. 

a)                b)  

 

Figure 19: Correlations between body condition scores collected in the 2019-2020 dairy year in 

Lacaune breed (a) and Pyrenean dairy sheep breeds (b)  

 
Factors influencing BCS at each physiological stage  
Factors influencing body condition scores are reported in Table 23. The models perform better in the 

Lacaune and Manech Tête Rousse breeds. The coefficients of determination of the five linear models 

are high (R² = 0.46 to 0.77 for the Lacaune breed and 0.50 to 0.67 for the Manech Tête Rousse breed). 

Breeds Variables 
BCS before 
lambing 

BCS at suckling 
BCS at first 
milk test-
day 

BCS before 
mating 

BCS after 
mating 

Lacaune 

Mean 3.08 2.76 2.79 2.88 2.94 

Sd 0.28 0.31 0.34 0.25 0.26 

Minimum 2 2 2 2 2 

Maximum 4 3.75 3.75 3.75 3.5 

CV 9 11 12 9 9 

Pyrenean 
breeds 

Mean 2.45 2.45 2.4 2.57 2.63 

Sd 0.22 0.22 0.21 0.21 0.21 

Minimum 1.75 1.75 2 1.75 2.25 

Maximum 3 3 3 3 3 

CV 9 9 9 8 8 
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Looking digressively at the coefficient of determination of each model, the two factors that seem to 

have the most influence on the body score condition are the sire and the farm.  

 

Table 23: Factors affecting BCS at each physiological stage in Lacaune breed and Manech Tête Rousse 

(MTR) breeds 

Variables 

BCS before 
lambing 
model 

BCS at 
suckling 
model 

BCS at first 
milk control 
model 

BCS before 
mating model 

BCS after 
mating model 

Lacaune MTR Lacaune MTR Lacaune MTR Lacaune MTR Lacaune MTR 

Farm * ** *** NS *** . *** *** *** *** 

Lactation 
rank 

*** NS . ** NS ** *** . *** NS 

Litter size . * *** ** *** *** *** NS *** ** 

Day of 
measurement 

* NS *** NS NS NS *** * NS * 

Month of 
lambing 

*** * *** NS ** NS *** *** NS NS 

Sire NS NS *** NS *** NS *** *** *** NS 

Corrected 
milk yield 

    *** ** *** *** *** *** 

Corrected FC     *** NS *** NS *** NS 

Corrected PC     NS NS NS NS NS NS 

          *** : p-value ≤ 0.001 ; ** : p-value ≤ 0.01 ; * : p-value ≤ 0.05 ; NS : Not Significant 

BCS: Body condition score ; MTR: Manech Tête Rousse ; FC: fat content ; PC: protein content 

Lacaune dairy ewes with multiple lambs had significantly lower BCS at each stage of the production 

cycle. These differences were of the order of 0.2 BCS points between singles and multiples. The largest 

differences of BCS were found in the 2nd BCS measurement when ewes were about to start milk 

production (e.i. when the lambs were suckling), and at the peak of lactation at the first milk recording. 

The same tendency was observed for the Pyrenean breeds; however, the differences in BCS were lower 

and were only significant for the first three BCS. 

Parity had a significant influence on the BCS throughout the production cycle of the dairy ewes. In the 

Lacaune breed, primiparous ewes have a higher BCS than multiparous ewes before lambing and have 

a lower BCS at the end of lactation, near mating, than multiparous ewes. At the beginning of lactation, 

there was no significant difference in the BCS of the multiparous animals between parity. However, 

there were significant differences in BCS between ewes in 2nd and 4th lactations and more before 

lambing and around mating time. For the Pyrenean breeds, ewes in 2nd lactation also have a 

significantly lower body condition than primiparous ewes before lambing for all three breeds, at the 

beginning of lactation for MTR and BB ewes, before mating for MTN, and after mating for MTR ewes. 

The day of the measurement had a significant effect on the BCS at suckling and before mating in the 

Lacaune breed. The closer to lambing (day 0), the higher the BCS at suckling ([0; 10 d]: BCS = 3.18; [20; 

30 d], BCS = 3). For the BCS before mating, the closer to mating (210 d), the higher it was ([150 ; 170 

d] : BCS = 3.21 ; [190 ; 210 d], BCS = 3.27). For the three breeds of Pyrenean dairy ewes, the day of the 

measurement did not significantly affect BCS during the production cycle. 
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Effect of sire on BCS: 
The correlations between successive BCS solutions for sire are significantly positive and high (Table 

24). The father thus seems to have the same impact on two successive BCS. 

Table 24: Pearson correlations between sire effect solutions for successive BCSs for Lacaune breed. 

BCS 1 = BCS before lambing, BCS 2 = BCS at suckling, BCS 3 = BCS at 1st milk control, BCS 4 = BCS before 

mating, BCS 5 = BCS after mating. Correlations are significant (p-value < 0.05) 

 
Changes in body condition scores by physiological stage   
Model 2, highlights a significant effect of physiological stage on BCS (p-value < 0.05) (Table 25). After 

Tukey's adjustment, we observe that physiological stage conditions are significantly different for 

Lacaune ewes. The contrast between BCSs is significantly different between successive and non-

successive BCS. 

For the Pyrenean breeds, some BCS are not significantly different: in Manech Tête Rousse, the 

difference of BCS is not significant between the BCS at suckling and the BCS at 1st milk control, also 

between the BCS before lambing and the BCS before mating. In the Basco-Béarnaise breed, the first 

three BCS are not significantly different and the last two BCS around mating.  In the Manech Tête Noire 

breed, the first three BCS are not significantly different. 

For the other variables in the model, all fixed effects are significant (p-value < 0.01 for the adjusted 

standardized fat content and p-value < 0.001 for other factors), except for the adjusted standardized 

protein content that is not significant. 

Table 25: Value of estimated adjusted mean body condition scores by physiological stage and breed 

(emmeans package from R) 

 BCS before 
lambing 
model 

BCS at 
suckling 
model 

BCS at first 
milk control 
model 

BCS before 
mating model 

BCS after 
mating model 

Lacaune 3.01 2.70 2.74 2.83 2.90 

Manech Tête 
Rousse 

2.66 2.50 2.46 2.68 2.74 

Manech Tête 
Noire 

2.35 2.35 2.40 2.60 2.76 

Basco-
Béarnaise 

2.35 2.31 2.34 2.59 2.68 

 

The animal variance (VA = 0.01) is lower than the residual variance (VR = 0.05). The VA/(VA +VR) ratio 

(0.2) represents the repeatability of the BCS i.e, a maximum limit for the heritability for this trait. 

 

 BCS 1 –  BCS 2 BCS 2 –  BCS 3 BCS 3 –  BCS 4 BCS 4 –  BCS 5 

Pearson 
correlation 

0.54 0.82 0.20 0.64 
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Typology of body condition profiles 
The BCS profiles were studied within each breed. The results of the typology is presented here for the 

Lacaune breed. Based on the evolution of the three partitioning quality criteria presented in the kml 

package, four clusters were chosen to characterize the BCS profiles of Lacaune dairy ewes. 

Figure 20a presents the average BCS profile of each cluster. BCS curve A (n=1,011), has the highest and 

most consistent BCS level over time. The curves B (n=743) and C (n=1,123) start with a pre-lambing 

BCS of 3, and then a 0.25 BCS point gap widens in early lactation between both curves. After suckling, 

ewes in profile B rebuild their body reserves until they reach the same BCS as profile A, and ewes in 

profile C decrease in BCS. Profile D (n=720) is close to profile B with a lower body condition level. 

These four body condition kinetics in the Lacaune breed are mostly characterized by the herd. The two 

main groups of profiles (A/C and  B/D) distinguished the two Lacaune breeding organizations. Thus we 

decided to correct the BCS for herd effect. Kml analysis based on these corrected BCS also reveals four 

BCS profile clusters (Figure 20b). Similar kinetics to the initial one is observed with two profiles (A, D) 

showing a strong difference in BCS level as well as a profile of ewes that replenish (B) or mobilize (C) 

their body reserves. 

a) b)  

Figure 20: Partitioning of body condition profiles of dairy ewes into four clusters based on initial BCS 

(a) and BCS corrected for herd effect (b) (Lacaune breed) 

The correction for herd effect had an impact on the classification of ewes within clusters. About 20% 

of the ewes initially in clusters A (highest level of BCS) and B (reconstitution profile) remained in these 

same clusters. Cluster C (mobilization profile) underwent the most reclassification (91%), in contrast 

to cluster D (lowest level of BCS) where 55% of the ewes came from the initial cluster D and none from 

the opposite cluster (A).  

In order to characterize each cluster, a logistic regression (model 3) was performed with the corrected 

cluster identification as the dependant variable. Each effect of the model was found to be significant 

in explaining the typology of BCS profiles in the different clusters: Parity was the factor with the largest 

impact on the partitioning of BCS profiles, followed by milk persistency and duration corrected milk 

yield. Litter size has the least impact on the classification. 
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Cluster A is mostly composed of mature ewes and, more specifically, of ewes having completed 3 or 

more lactations (68%) with single litter size (61%) and lower milk performance (lower average milk 

production and milk persistency qualified as low to medium) (Table 26). Cluster B is mostly composed 

of mature ewes (88%), more dairy (295 L on average), but with a milk persistency that can be limited. 

The ewes in cluster C are mostly primiparous, with on average a high level of milk production and of 

milk persistency. Cluster D is composed mostly of ewes with multiple lambs (74%) and a higher level 

of milk production (309 L). 

Table 26: Composition of cluster based on BCS corrected for the herd effect, with the percentage of 

intra-cluster modalities (Lacaune breed) 

Factors Conditions A B C D 

Lactation rank 

L1 15 % 12 % 48 % 24 % 

L2 17 % 30 % 14 % 27 % 

 L3 25 % 21 % 14 % 14 % 

L4 and more 43 % 35 % 24 % 36 % 

Litter size 
Single 61 % 46 % 50 % 26 % 

Multiple 39 % 54 % 50 % 74 % 

Dairy 
performances 

Duration corrected milk 
yield (L) 

276 295 295 309 

Persistency -  +  

 

Ewes from clusters A and D had significantly different feed efficiency levels with average values of 0.86 

and 0.93 UFL/d, respectively. The average feed efficiency of ewes from clusters B and C were similar 

0.89 UFL/d). Almost no significant correlation between feed efficiency and BCS was obtained, and the 

highest correlation (0.20) was observed after mating. 

 

5.3 Main results in dairy sheep 

About 160 dairy ewes have been phenotyped in experimental facilities, and more than 5,000 dairy 

ewes have been phenotyped in commercial farms. 

Total individual feed intake was available for 88 lactating ewes from experimental designs. In 

commercial farms, only partial knowledge of feed intake was available: in some farms, individual 

concentrate intake was recorded and forage intake at the pen level. Because the group of feed intake 

masks individual variability in feed intake, the main results must be confirmed with individual records.  

However, the study performed in Lacaune ewes highlighted that milk production and forage intake 

were the two factors influencing feed efficiency the most: considering average values for both traits 

led to major reclassifications of the ewes. In Chios sheep, based on group feed intake, they suggest 

that milk fat and lactose contents are indicators of energy intake efficiency, with lactating ewes having 

higher values being more efficient. In the Assaf experimental population, milk fatty acids composition 

has been significantly associated with feed efficiency criteria (FCR and RFI), and they have been highly 

performant in predicting extreme feed efficiency indexes. Body condition scores have been the most 

recorded traits in dairy sheep. If no significant link has been highlighted with feed efficiency traits, it is 

worth noticing that feed efficiency levels were different in different clusters of ewes defined based on 

BCS. Variations in body composition traits assessed by ultrasound are proposed to be considered as a 
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proxy for negative energy balance status in non-lactating ewes. These results have to be confirmed, 

particularly in lactating ewes. 

In conclusion, in dairy sheep, feed efficiency proxies are likely to be linked with milk fatty acid 

composition and ewes body composition and body composition scores. 

 

6 Dairy Goats 

6.1 Materials and Methods 

6.1.1 Experimental designs 

1. France (INRAE) 

In Bourges INRAE experimental farm, the protocol to phenotype feed intake related traits (including 

proxies), body condition traits, and milk-related traits in goats belonging to divergent lines on longevity 

has been designed for Alpine goats. 

A total of 199 dairy goats belonging to the high and low functional lines were produced with 

phenotyping of longevity. The analysis of survival in the full design (including also previously created 

animals) showed that the overall survival of high_longevity goats was significantly better than 

low_longevity goats (hazard ratio of culling/death = 0.63, confidence interval = 0.47; 0.86). Results 

were published in Ithurbide et al., J. Dairy Sci. 2022, in the frame of SMARTER. So the total number of 

180 goat expected is achieved. 

Out of the 199 dairy goats created, 80 were expected to undergo challenges in WP3 in first lactation 

(as described in DoA) and the same animals were expected to be monitored for feed efficiency. 

However, we achieved to monitor 143 goats for feed efficiency in 3 years, with the useful phenotypes 

being: individual intake of concentrates, weight and milk production in order to analyse residual feed 

intake (RFI).  

In 2019, 49 goats from these lines were born in January and mated in august 2019, and they were 

lambing in January 2020. In 2020 and 2021, two cohorts of primiparous goats (N=47 and 47 in 2020 

and 2021, respectively) belonging to longevity divergent lines were created. 

Goats born in 2019, 2020 and 2021 were monitored daily for individual concentrate intake using the 

INRAE feeder, for feed intake-related traits (including proxies), for body condition traits, and for milk-

related traits on several periods during their first lactation.   

 

6.1.2 On-farm designs 

1. France (CapGènes) 

Animals and phenotypes 

The experiment was performed in 14 commercial farms and in the INRAE Experimental Farm of La 

Sapinière, between 2019 and 2021. The data sampling is not finished yet for campaign 2. A total of 
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6,124 (2,582 Alpine and 3,180 Saanen) dairy goats were phenotyped for feed efficiency and feeding 

behaviour traits (Table 27).  

Table 27: Status of data sampling in the 13 commercials farms and La Sapiniere during the two 

campaigns of sampling, and the actual number of animals recorded. Farms were classified into four 

main breeding/feeding systemsC: conventional, O: organic, P: pasture/indoor, G: green feeding. Feed 

intakes were differently recorded: individual concentrate intakes from automatic feeder (AF) or 

Manually delivered (M) in milking parlour, or at the level of the batch (B)B. 

 

  Number of 
animals 

collected per 
breed 

Farm Feed 
recording 

Alpine Saanen 

Farm 1 (C) AF 66 123 

Farm 2 (C) B 965 0 

Farm 3 (C) B 0 876 

Farm 4 (C) B 0 545 

Farm 5 (C) M 0 528 

Farm 6 (C) B 524 0 

Farm 7 (C) B 144 0 

Farm 8 (C) B 0 268 

Farm 9 (O/G) M 0 742 

Farm 10 (P) AF 276 0 

Farm 11 (C) M 95 10 

Farm 12 (C) B 232 88 

Farm 13 (C) M 48 0 

Farm 14 (G) AF 111 0 

La Sapinière 
(C) 

AF 121 0 

Total  2,582 3,180 

 

Feed intake was usually recorded four times during the lactation (Figure 21): at the beginning of the 

lactation (feed intake 1, between 0 and 60 days in milk (DIM) and feed intake 2, between 60 and 90 

DIM), around reproduction (feed intake 3, between 210 and 260 DIM) and at the end of the lactation 

(feed intake 4, between 240 and 280 DIM). A total of 29,437 records (12,250 and 17,187 for Alpine and 

Saanen, respectively) were recorded. 

 

Animals were fed with different forages and concentrates, depending on the breeder. On each test 

day, feed intake was determined by weighing the total ration distributed and that wasted by trained 

staff from the milk recording organisms. The forage quantity was measured by weighing all the offered 

forage, with a scale, at the batch or farm level (not individually). For concentrates, the quantity was 

measured either individually with automatic feeders or manually in the milking parlour or at the batch 

level by weighing all the offered concentrates, depending on the farm. Thus, for farms without 

individual distribution of concentrates, the individual feed intake was the average feed intake of the 
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batch to which the animal belongs (83% of the dataset). For farms with individual distribution of 

concentrate, the individual feed intake was the average feed intake of the batch to which the animal 

belongs for forage, plus the individual intake of concentrate (17%). Dry matter intake (DMI) was thus 

estimated from the information indicated on the concentrate labels and from forage analysis, for each 

animal and each test day. Energy Intake (EI) was estimated by multiplying DIM and energy 

concentration. Nutritional feed quality was recorded for each forage and each concentrate, and energy 

content was given by INRAE (Agabriel, 2010). Test day milk recording data (milk yield, fat, and protein 

contents) were also measured at the same time as the feed intake control. 

The chest width (CW) was used as a proxy of the body weight and was measured one time during the 

lactation (about 150 DIM), on primiparous goats during campaign 1 and on the primiparous and 

multiparous goats during campaign 2.   

 

 

 

Figure 21: Sampling of food intake during a complete lactation.  

   

Blood β-hydroxybutyrate (BHB) measurements were performed in one commercial farm during 

campaign 1 (n=415 measurements) and in three other commercial farms during campaign 2 (n=1,180 

measurements), on primiparous goats only. Additional 485 measurements were also performed in the 

INRAE La Sapiniere farm. A total of 2,080 measurements were obtained from 534 primiparous goats 

of Alpine and Saanen breeds.Blood BHB is a proxy to monitor extensive mobilization of body reserves 

and intense ketone body synthesis leading to metabolic disorders (ketosis). The gold standard measure 

is a laboratory dosage of serum after blood centrifugation. This time-consuming method prevents 

large-scale measurement and genetic parameter estimation. Data from INRAE experimental farms 

were used to compare a new method using a blood sugar/ketone meter (Abbott Freestyle Optium 

NeoH) with gold-standard laboratory measurements. Results provided good correlations in meat 

sheep (r=0.76; N=48) and dairy sheep (r=0.58; N=48) between online and laboratory methods. A 

protocol was drafted and sent to French partners (Capgenes, Race De France) to implement large-scale 

monitoring on-farm with the ketone meter for genetic analyses. This BHB measurement protocol is 

presented in appendix 7. 

For all the farms, the cartilage or blood sampling was complete: 1,768 samples were collected. A total 

of 1,464 goats have been genotyped with the 50K chip (1,082 funded by the SMARTER project). 

The selection of the goats to be genotyped was made with the following criteria: primiparous, pure 

breed, known parents, with valid and complete phenotypes (milk recording, feed intake, chest width). 

 

Database constitution 

Some filtration criteria were applied to the initial database to have a clean database (Table 28):  
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- Breed: goats had to be purebred of Alpine or Saanen breeds, 
- CW: goats had to have a chest width measurement, 
- CaL: the difference between the day of feed intake measure and test day milk had to be inferior 

or equal to 7 days,  
- LATOCA: filtration on extreme values for milk, fat and protein yields, fat and protein contents, 
- DM: 2 kg <Dry matter intake (DM) <3.85 kg, goats with higher refused quantity were elimi-

nated, 
- LL: goats in long lactation were eliminated. 

Table 28: Number of animals per farm after each filter criteria. 
 

Filters: No filter  Breed CW CaL LATOCA DM LL 

Farm 1 245 183 52 51 49 43 41 

Farm 2 930 928 665 664 649 649 621 

Farm 3 876 876 405 405 405 405 367 

Farm 4 574 563 386 370 369 369 355 

Farm 5 573 568 215 210 208 208 182 

Farm 6 524 524 298 298 295 295 280 

Farm 7 145 144 46 45 45 45 40 

Farm 8 227 226 72 72 71 71 44 

Farm 9 763 733 259 259 256 256 127 

Farm 10 275 275 157 155 155 155 155 

Farm 11 120 105 42 41 41 41 32 

Farm 12 336 320 108 108 108 108 80 

Farm 13 48 48 46 46 46 46 46 

Farm 14 112 111 31 31 30 30 29 

La Sap. 66 65 63 63 62 0 0 

Total 5,814 5,669 2,845 2,818 2,789 2,721 2,399 

 

After filtration, 2,399 animals were retained, which is 41% of the initial data. An animal was recorded 

several times per campaign, maximum 4 times/per campaign, during each feed intake recording. The 

final database contains 5 880 lines of animal*feed intake records, with an average of 2.45 feed intake 

records per goat. 

 

Calculation methods for feed efficiency 

Feed efficiency was estimated by two methods: 

- Ratio between product (outcome) and feed intake (expenses): 

Feed efficiency= 
𝑈𝐹𝐿𝑙𝑎𝑖𝑡

𝑄𝑢𝑎𝑛𝑡𝑖𝑡é É𝑛𝑒𝑟𝑔𝑖𝑒 𝐼𝑛𝑔é𝑟é𝑒−𝑈𝐹𝐿𝑒𝑛𝑡−𝑈𝐹𝐿𝑐𝑟𝑜𝑖𝑠
 

According to this model, efficient animals were those with positive values. 

 

-  Residual energy intake (REI) was estimated as the residual of a linear regression model:  

𝐷𝐸𝐼 (𝑈𝐹𝐿) = 𝛽0  + 𝛽1 × 𝑀𝑌 + 𝛽2 × 𝐹𝐶 + 𝛽3 ∗ 𝑃𝐶+𝛽4 × 𝐶𝑊 + 𝑹𝑬𝑰 
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Where, DEI is the daily energy intake (expressed in Unité Fourragère Lait unit (UFL)), β0 is the 

intercept, β1 is the regression coefficient for MY (milk yield), β2 and β3 are the regression coefficients 

of FC and PC (fat and protein contents) and β4 is the regression coefficient for chest width (CW). 

REI has been estimated for two breeds in commercial flocks: Saanen and Alpine.  

According to this model, efficient animals were those with negative REI values. 

We classified the animals in 3 groups of REI, using standard deviation (sd_REI): inefficient (REI 
>0.5 x sd_REI), intermediate (-05 x sd_REI ≤ REI≤ 0.5 X sd_REI), efficient (REI<-0.5 x sd_REI). 
 

 

2. UK (Yorkshire dairy goats) 

 

A total of 1,146 dairy goats were milked three times per day in the first stage of lactation, which was 
reduced to twice a day when milk yields decreased. During the first lactation, females were fed ad 
libitum for the first 150 days, at which point feed was restricted according to milk yield. Animals were 
fed a digestible fibre-based blended feed. Animals entered a rotary feeding station where their ID tag 
was read, and feed was allocated. Subsequently leftover feed was weighed and the difference between 
feed dispensed and leftover was calculated. Only concentrate intake was recorded whereas hay was 
fed ad libitum and was not recorded. Body weight data was recorded for each animal after every 
milking using an automated scale. 

A univariate, random regression animal model was used with second-order Legendre polynomials for 

random animal and permanent environment effects. Fixed effects were: year-season of kidding, age 

at kidding, test day, feeding regime (ad libitum vs restricted feeding), and fixed lactation curves using 

third-order Legendre polynomials. Each trait was included as a fixed effect for all other traits in the 

univariate analyses, but not in bivariate analyses used to calculate genetic correlations. An 

approximation of feed efficiency (FE) was obtained by including MY and BW as covariables. 

 

6.2 Results 

6.2.1 INRAE experimental design 

Concentrate intakes of dairy goats were recorded through automatic feeders. Results do not show any 

difference in feed intake raw phenotypes (Table 29), number of visits, intake per visit, intake per day 

between the high and low longevity lines.  

Table 29: Average Feed intakes in primiparous dairy goats from two cohorts monitored in 3 different 

periods with a daily ration of 0.9 Kg concentrate/goat/day.  

 Cohort 1 (FI recording in 

September 2020 during 

8 days) 

Cohort 2 (FI recording in 

March/April 2021 during 50 

days) 

Cohort 2 (FI recording in 

August 2021 during 50 

days) 

 LGV- LGV+ LGV- LGV+ LGV- LGV+ 

N 18 29 20 27 20 27 
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Nb visits / day 15.8 ±4.1 17.4±7.3 19.9±5.00 19.5±3.4 17.7±3.32 17.4±3.41 

Intake per visit (kg) 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01 0.06±0.01 

Intake per day (kg) 0.640±0.12 0.630±0.14 0.820±0.034 0.822±0.028 0.849±0.08 0.865±0.01 

Intake duration per day (s) 551±170 678±508 738±170 775±145 641±133 688±132 

Intake speed per day ( kg/hrs) 4.72±0.75 4.40±1.24 4.74±0.80 4.62±0.53 5.24±0.99 5.17±0.73 

FI: Feed Intake; LGV-: divergent line for lower longevity; LGV+: divergent line for longer longevity. 

 

6.2.2 France (on farm design)  

Ratio 

The feed efficiency values (ratio) ranged from 0.236 to 2.249, with a mean value of 0.91 and a variation 

coefficient of 25.92% for Alpine breed; and from 0.119 to 2.126, with a mean value of 0.75 and a 

variation coefficient of 27.38% for the Saanen breed (Table 30). 

Table 30: Numbers (n), minimums (Min), means, standard deviations (SD), variation coefficient (CV), 

and maximums (Max) of feed efficiency (ratio) for both Alpine and Saanen breeds. 

Breed n Min E1 Q1 Median Mean SD CV Q3 E3 Max 

Alpine 2919 0.236 0.203 0.754 0.888 0.91 0.24 25.92% 1.041 1.621 2.249 

Saanen 2961 0.119 0.134 0.608 0.739 0.75 0.21 27.38% 0.881 1.372 2.126 

 

Feed efficiency (ratio) seems to be decreasing during lactation (Figure 22). 

 

 

Figure 22: Evolution of feed efficiency (ratio) according to the physiological stage during lactation. 

In both breeds, an important variability between farms was observed for feed efficiency (ratio) 

(Figure 23).  
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Figure 23: Evolution of feed efficiency (ratio) during the 2 months following kidding (red: (0,30] 

days and blue: (30-60] days), per farm. 

REI 

The REI values ranged from -1.04 to 0.95, and from -1.10 to 1.07, for Alpine and Saanen breed 

respectively, and with a mean value of 0 as they are residuals of multiple linear regression for both 

breeds (Table 31 and figure 24). 

Table 31: Numbers (n), minimums (Min), means, standard deviations (SD), and maximums (Max) of REI 

for both Alpine and Saanen breeds. 

Breed n Min E1 Q1 Median Mean SD Q3 E3 Max 

Alpine 2919 -1.04 -0.86 -0.16 0.01 0 0.29 0.17 0.86 0.95 

Saanen 2961 -1.10 -0.78 -0.14 -0.01 0 0.26 0.16 0.78 1.07 
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Figure 24: Evolution of REI according to the physiological stage during lactation for Alpine and 

Saanen breeds. 

 

An important variability between farms was observed for REI in both breeds (Figure 25).  

 
Figure 25: Evolution of REI during the 2 months following kidding (red: (0, 30] days and blue: (30, 

60] days), per farm. 

Physiological stage (day) 
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Goats were divided into 3 REI groups: efficient, intermediate, and inefficient (Table 32). The efficient 

group has lower dry matter intake (DMI) and net energy intake (NEI) values than the inefficient group. 

No difference was observed between the 3 groups for milk yield (MY), fat (FC), and protein (PC) 

contents. 

Table 32: Number of goats, means of dry matter intake (DMI), net energy intake (NEI), REI, milk 

yield (MY), fat (FC) and protein (PC) contents, milk yield at day 35 (MY35), chest width (CW), the 

proportion of concentrates (PCO) and feed efficiency ratio for efficient, intermediate and 

inefficient REI groups.  

  REI groups  

  Efficient Intermediate Inefficient SD 

Number of goats 969 1,433 1,222  

Mean 

DMI (kgMS) 2.59 2.85 3.08 0.30 

NEI (UFL) 2.34 2.68 2.97 0.31 

REI (UFL) -0.33 0.00 0.32 0.27 

MY (kg) 3.60 3.62 3.52 1.06 

FC (g/L) 39.36 39.48 39.79 5.56 

PC (g/L) 34.03 34.02 34.17 3.19 

MY35 (kg) 3.87 3.91 3.81 1.10 

CW (cm) 89.83 90.11 89.47 5.32 

PCO 37.61 40.08 40.12 8.68 

Feed efficiency (ratio) 1.01 0.82 0.69 0.24 

Number of farms 12 14 12  

% primiparous 82.77 79.00 74.55  

Number of feed intake controls 1.60 1.84 1.39  

 

Comparison between Ratio and REI 

Feed efficiency ratio is positively correlated with milk yield production (r=0.71), unlike REI due to the 

regression linear model construction (Figures 26 and 27). The more efficient goats are the more 

productive milk.  

The correlation between REI and feed efficiency ratio is negative: -0.58 (Figure 26b).  
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Figure 26: Relationship between REI and milk yield production (A) and relationship between feed 

efficiency ratio and milk yield production (B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Correlations between milk yield production (LATOCA), feed efficiency ratio (EA) and REI.  

 

For the blood β-HB concentration, we obtained 3.9 measurements per lactation, on average, for 534 

primiparous goats. The average blood β-HB concentration was 0.48 mmol/L and ranged from 0.10 to 

1.70. The factors of variation were identified with an ANOVA: the farm, the lactation stage, the milk 

yield, the breed. Genetic parameters were estimated using a linear repeatability model. The heritability 

was estimated at 11% and the repeatability at 28%. 

 

6.2.3 UK (Yorkshire dairy goats) 

Initial analysis of feed intake in dairy goats was focused on the estimation of heritability and genetic 

correlations between feed intake (FI), body weight (BW), and milk yield (MY). The data consisted of 

9,970 test day records for FI (kg), MY (kg), and BW (kg) relating to 1,146 mixed-breed dairy goats 

(Table 33). Animals were the progeny of 64 sires and 909 dams, and the pedigree contained 6,644 

animals.  

Table 33: Descriptive statistics for feed intake, milk yield, and body weights in Yorkshire Dairy Goats 

Trait Min Max Mean SD 

Feed intake (kg) 0.14 3.89 1.57 0.48 

Milk yield (kg)  0.03 8.85 4.32 1.23 

Body weight (kg) 35.50 118.60 73.05 12.31 
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Genetic parameters were obtained under a random regression model with second order Legendre 

polynomials for random animal and permanent environment effects. Heritability for FI, BW, and MY 

ranged from 0.04 (520 DIM) to 0.32 (124 DIM), 0.33 (37 DIM) to 0.68 (520 DIM), and 0.19 (513 DIM) to 

0.36 (97 DIM), respectively. Genetic correlations at the start and end of lactation were as follows: FI 

and MY 0.52 (s.e. 0.25) to 0.91 (s.e. 0.05); FI and BW 0.08 (s.e. 0.21) to 0.47 (s.e. 0.21); BW and MY -

0.24 (s.e. 0.27) to -0.25 (s.e. 0.22). 

 

6.3 Main results in dairy goats 

About 6,960 dairy goats have been phenotyped under commercial conditions. 

Total individual feed intake was not available but concentrate intake was recorded individually for the 

1,146 UK dairy goats and part of the French Alpine and Saanen. Based on these partial feed intake 

records, it has been observed that the feed efficiency ratio decreased throughout lactation (which 

might be directly linked to the decrease in milk yield throughout lactation). In contrast, the REI 

evolution was not affected by the lactation stage, and the correlation between both feed efficiency 

criteria was found to be negative.  

When clustering goats from French commercial farms in three groups based on their REI levels, no 

significant differences were observed for classical milk production traits (milk yield, fat, and protein 

contents). At the genetic level, in Yorkshire goats, significant positive genetic correlations (>0.52) have 

been identified between feed efficiency and milk yield throughout lactation.  

 

7 Meat Sheep 

7.1 Materials and Methods 

7.1.1 Experimental designs 

1. FRANCE (INRAE) 

Novel phenotypes are being collected on experimental Romane individuals belonging to two lines 

divergently selected on RFI. The divergent selection started in 2014, and animals phenotyped for novel 

traits, in the frame of the Smarter project, were born in 2018, 2019, 2020 and 2021 and belong to the 

2nd, 3rd and 4th generations of selection. 

Each year, around 100 male lambs born from planned matings are controlled from 90 to 140 days of 

age under a concentrate diet (as presented in (Tortereau et al., 2020)).  

During this 6-week period of control, lambs are weighed at the beginning and at the end of the control 

period, and ultrasounds are performed at the end of the control to measure BFT-US and MD-US. During 

all the control periods, concentrate intake is recorded through ACF. Male lambs are then controlled 

under a total mixed diet (2/3 forage + 1/3 concentrate), with similar phenotypes being recorded: feed 

intake, body weights, and body composition traits (BFT and MD at the end of the control period). 

Because fewer individuals can access AFF than ACF (Weisbecker et al., 2020), male lambs were split 

into two groups for this control under a total mixed diet. The first group was tested during 6 weeks 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  37 | 

123 

 

from 5 to 7 months old, and the second group was tested during 6 other weeks, from 7 to 9 months 

old. 

Under a concentrate diet, the individual RFI was estimated as the residual of the multiple linear 

regression of ADFI on ADG, E-BFT, and E-MD to account for production requirements and on the 

metabolic BW at the end of the test ((E-W)0.75) to account for maintenance requirements (proc reg; 

SAS Institute Inc., Cary, NC, USA). The year was added as a fixed effect, and FCR was calculated as the 

ratio ADFI/ADG. 

Under a forage diet, the individual RFI was estimated with a similar model, including an additional fixed 

effect of the control period within each year. 

At the end of each 6-week period of control, different biological samples are stored: blood sampled at 

the jugular vein, rumen fluid (through an oesophageal probe), and faeces. 

Blood is aliquoted to perform: 

- genotyping (Illumina 50K SNP chip). 

- plasma is stored (after 10 minutes of centrifugation at 2400g) to perform metabolomics 

(NMR) and 15N isotopic analysis. 

-  

Rumen fluid is aliquoted to perform: 

- Metabolomics (NMR) 

- Long-chain fatty acids (gas chromatography) 

- Volatile fatty acids (gas chromatography) 

- Microbiota analysis through the sequencing of V4-V5 regions of the 16S rRNA gene. 

SNP genotyping was performed by Labogena company (Jouy-en-Josas, France) on Illumina 50K SNP 

chips. A total of 430 animals (born and phenotyped from 2018 to 2021) was genotyped.  

Laboratory analyses: The protocols used to obtain NMR spectra from plasma, and rumen juice, 

microbiota sequences, long-chain fatty acids, volatile fatty acids, Faecal NIRS, and 15N natural 

abundancies are detailed in Appendix 1. 

 

Statistical analyses: 

The effect of divergent selection on RFI was analysed in males only, on traits such as body weights, 

growth, body composition, feed intake, and residual feed intake, collected under the concentrate diet, 

with analysis of variances taking into account the following fixed effects when significant (p-value < 

0.05): divergent line (two levels), year (six levels), generation (three levels), pen (seven levels) and an 

integrative indicator variable (six levels), summarising the early life conditions of lambs: litter size (1, 

2, 3 or 4 and more), suckling method (maternal or artificial feeding) and rearing method (1, 2 or 3 and 

more lambs reared per dam). Body weight at the beginning of the test was included as a covariate.  

Similar analyses were performed under the forage-based diet, taking into account the following fixed 

effects: divergent line (two levels), year (three levels), period in the year (two levels), generation (two 

levels), pen (two levels) 
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The effects of divergent selection on microbiota and metabolomics were studied through multivariate 

analyses. Discriminant analyses were performed to estimate the predictability of traits from either 

metabolomics or ruminal microbiota data. 

Microbiota statistical analyses: microbiota analyses were performed on lambs phenotyped for RFI in 

2018, 2019, and 2020 (samples collected in 2021 are still being processed). If the OTUs identification 

was performed jointly for concentrate and total mixed diet in order to have similar OTUs affiliations 

under both diets, the statistical analyses were performed separately for each diet. Microbiota datasets 

obtained through sequencing are compositional datasets. Therefore, for each diet, OTUs were 

transformed in Centered Log Ratios (CLR) after the imputation of zeros by applying the Geometric 

Bayesian Method (GBM). On these CLR-OTUs, analyses of variance were performed, including main 

technical effects as fixed effects (year, run of sequencing, pen, sequencing depth). Residuals were 

retrieved and analysed through multivariate approaches. PLS-DA and sPLS-DA were performed with 

MixOmics R work package (Rohart et al., 2017), discriminant analyses being performed considering the 

divergent lines or groups based on feed intake or phenotypic RFI. Cross-validations were performed to 

estimate the error rate. Differential analyses (Analysis of compositions of microbiomes with bias 

correction (ANCOM-BC)) were performed to identify OTUs that have significantly different 

abundancies in animals grouped based on their feed efficiency or feed intake. These analyses were 

performed for 16S OTUs dataset and 18S OTUs dataset separately. 

Metabolomics statistical analyses: Only NMR analyses from lambs phenotyped for RFI in 2018 and 

2020 are presented here (samples collected in 2021 are still being processed). For each diet 

(concentrate or forage-based) x biological fluid (plasma or ruminal fluid) combination, metabolite 

relative quantifications were corrected using a linear model for the following fixed effects: year (2 

levels) and pen (11 levels nested in year levels) for the concentrate diet, and with additional effects of 

adding period (2 levels) for the forage-based diet. Partial Least-Square-Discriminant Analysis (PLS-DA) 

from R package mixOmics (Rohart et al., 2017) were applied on residuals obtained from the linear 

models to dig into the links between genetic lines and metabolites in the rumen or plasma under each 

diet. The area under the ROC curve was used to select the number of components to take into account 

in the discriminant analyses. Then loadings and Variable Importance in Projection (VIP) were used to 

determine which variables were the most explanatory. ANOVA, using the previously quoted fixed 

effects and the line, was used as a univariate way to compare the lines for all metabolites highlighted 

by PLS-DA. 

Faecal NIRS analyses: PLS were performed on NIRS spectra (after a pre-correction known as “SNV + 

Detrending” (Barnes et al., 1989) a first-derivative treatment), separately for each diet, and jointly for 

both diets. Cross-validation (6-fold) was performed to validate the models. PLS were performed to 

predict feed intake of the last 2, 5, or 15 days before faecal sampling and to predict RFI or FCR. 

15N : Nitrogen isotopic discrimination (Δ15Nanimal-diet) was calculated as the difference between δ15N 

in plasma and that measure in the corresponding diet, the latter calculated by weighting the 

contribution of each ingredient to total dietary N. The Δ15Nanimal-diet values were regressed by simple 

linear regression on the residual feed intake values to assess their relationship. In addition, ANOVA 

was conducted to determine whether Δ15Nanimal-diet values differed (P<0.05) across the two 

divergent genetic RFI lines. 

Genotypes: VanRaden’s first genomic relationship matrix (VanRaden, 2008) was computed from 

curated SNPs with the R package AGHmatrix (Amadeu et al., 2016). A PCA was then performed on this 

genomic relationship matrix with the mixOmics R package (version 6.18.1) (Rohart et al., 2017). 
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Data integration: Details about data integration are provided in Le Graverand et al., 2023 (a). To 

summarize: fixed effects and body weights were integrated with ruminal microbiota data in order to 

check whether ruminal microbiota data provided added information for prediction than routinely 

collected information. Sparse Partial Least Squares Regressions (sPLSR) were performed to assess how 

well feed efficiency related traits could be predicted with microbiota and zootechnical traits data. 

sPLSR were carried out with the mixOmics R package (version 6.18.1) (Rohart et al., 2017) on the CLR 

values adjusted for sequencing effects. Five-fold cross-validations were performed in order to tune 

hyperparameters and to calculate prediction accuracies (Pearson correlations calculated between true 

value and predicted value on the testing set, unseen during training of the models). three sets of 

predictors were considered: (i) The first set included either 16S- or 18S-adjusted CLR values. (ii) The 

second set included systematic effects: suckling method (concentrate diet only), phenotyping period 

(mixed diet only), year, pen, age and final BW. (iii) Finally, the third set of predictors included the 

systematic effects and CLR values of 16S or 18S OTUs (Le Graverand et al., 2023a). 

A second integration strategy involved more omics datasets: multivariate analyses were performed 

with six distinct ‘blocks’ of predictors: fixed effects and covariates (FC), genotypes (SNPs), plasma NMR 

spectra (NMR), ruminal volatile fatty acids (VFAs), long-chain fatty acids (LFAs), bacteria and archaea 

abundances (16S amplicon sequencing). We modified a Partial Least Square regression approach (PLS) 

to account for the three batches while selecting biomarkers of feed efficiency (Rohart et al., 2017). 

Cross-validation was repeated to fit one model per block on our training data (60% of the samples). 

Then, predictions for the validation set (30% of the samples) were obtained by using a weighted 

aggregation – based on the performance on each validation set. Testing data (10%) were 

independently used to assess the overall prediction accuracy based on Pearson correlations. (Le 

Graverand et al., 2023b) 

2. Uruguay (INIA-u): 

 

We evaluated 1,611 lambs born from 2017 to 2020 in two research stations: Glencoe from INIA and 

CIEDAG from the Uruguayan wool secretariat. The lambs belong to the information nucleus of the 

breeds Merino, Dohne, and Corriedale, which are part of the Uruguayan Genetic Evaluation of each 

breed. Traits related to growth, muscularity, fat, wool production, health, behaviour, feed intake, feed 

efficiency, and methane emissions were measured: 

• Wool traits (Ramos et al., 2021): Greasy Fleece Weight (GFW), Clean Fleece Weight (CFW), 

average Fibre Diameter (FD), Coefficient of Variation of Fibre Diameter (CVFD), and Staple 

Length (SL). These traits were recorded at first shearing, which was between 12 and 14 months 

of age. 

• Growth traits: Weaning Weight (WWT) measured at 4-5 months of age, and Yearling Body 

Weight (YWT) recorded at first shearing. It is also systematically measured during the feed 

intake test. 

• Muscularity and fat: Rib eye area and backfat thickness were measured at the end (last day of 

the test) of each feed intake test by ultrasonography (Ramos et al., 2020). 

• Body condition score following Russel et al. (1969) after shearing. 

• Worm resistance: measured as Fecal worm Egg Count (FEC). Animals were recorded twice 

during their first year of life under natural mixed-species challenge, according to the protocol 
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to evaluate the genetic resistance to gastrointestinal parasites in Uruguay (Goldberg et al., 

2011). 

In parallel, a sample of blood of each animal was taken, and DNA was subsequently extracted (Sambrok 

et al., 1989) and genotyped (not all animals) (Table 34). 

Table 34: Number of animals evaluated per breed, trait, and period of time (fully detailed data is 

presented in Table 36 in the Results section). 

 Merino Dohne Corriedale Total 2021 2022 

Feed intake (kg/a/d) 854 237 290 1611 2159 
Body weight (kg) 854 237 290 1611 2159 
Wool data 854 237 290 1611 2159 
Rib eye area (cm2) 854 237 290 1611 2159 
Backfat depth (mm) 854 237 290 1611 2159 
Body condition score 854 237 290 1611 2159 
Fecal egg count 854 237 290 1611 2159 
Methane (g/a/d) 823 230 223 1506 2050 
DNA 854 237 290 1611 2159 
Genotype (50 K) 854 0 290 1244 1662 

 

Feed intake tests (Ferreira et al., 2021; Amarilho et al., submitted to Livestock Science). Eighteen 

feed intake tests have been performed from 2018 until October 2021, in different periods of the years, 

from February to December. These tests were conducted at La Magnolia Experiment Unit (INIA), 

Tacuarembó, Uruguay. All protocols applied were approved by INIA Animal Ethics Committee (INIA 

2018.2). The following references were considered to adapt the feed intake trial to our conditions: 

Cammack et al. (2005), Cockrum et al. (2013), Paganoni et al. (2017), Redden et al. (2013). 

After 7 days of group acclimatisation to the feed, the animals were drenched and allocated to one of 

five automated feeding systems in accordance with the bodyweight (BW), sex, type of birth, and sire, 

during a 49-day test period (7 extra days for acclimatization and 42 days for measurements). Animals 

were fed ad libitum with Lucerne haylage (crude protein, 22%; NDF, 35%; ADF, 283%). All animals were 

tagged with RFID tags. Each pen had five individual automated feeders and two weighing platforms, 

which were equipped with an electronic tag reader, precision scale, and connected to a central 

computer (Figure 27); this allowed the control of feed intake and BW of the animals in a daily basis. 
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Figure 28: Diagram of the feed intake test. 

 

The RFID tag allows for identification of a specific animal at a feed bin and, therefore, allows for the 

feeding system to record visits of individual animals with specific start and end times and, 

consequently, their intake based on the difference in weight before and after the visit.  

The body weight of the animals was registered each time they accessed the water bins. 

After each feed bin and BW platform visit, the system documented the visit events by recording the 

animal’s identification tag, bin, and platform number. These data were continuously registered 

throughout the control.  

Methane emissions were estimated following the portable accumulation chambers protocol described 

by Goopy et al. (2011; 2016), Paganoni et al. (2017), and Robisnon et al. (2014). In brief, two estimates 

per animal were performed during the last weeks of the feed intake test. The traits evaluated were 

methane emissions, CO2 emissions, and O2 consumption. In the week of measures, 1 pen per day was 

measured in two consecutive runs of 10 animals; therefore, 20 animals per day were measured, and 

by the end of the week, 100 animals. If the feed intake test considers more than 100 animals, an extra 

run per day was performed if necessary. In accordance with Robinson et al. (2020), animals were on 

feed until the moment of the measure. At 20 to 30 and 40 to 50 minutes later, estimates of the 

concentration of CH4, CO2, and O2 were performed; in parallel, estimates of temperature, atmospheric 

pressure, and gases concentration were done. Gases measures were done with Eagle 2 equipment (RKI 

instruments, Union City, CA, USA). The Eagle 2 and chambers were checked between measure weeks 

and the Eagle 2 was calibrated periodically in accordance with the specifications provided by RKI 

instruments.  

 

Statistical analyses 

Basic data edition and calculations of ADG and RFI: Firstly, animals with any sanitary problem were 

removed from the study. In addition, BW measures smaller than 15 kg and greater than 80 kg were 

considered biologically unlikely and later excluded. In addition, BW was deleted if were considered 

outliers by the Student residuals with < -3 SD and > +3 SD using PROC GLM of software SAS program 

version 9.4 for Windows (Copyright © 2012 SAS Inst., Cary, NC).  

The model of the ADG estimate for the linear regression equation corresponded to: 

𝑌 =  𝛽0  +  β1𝑋 

where Y = daily BW (kg); β0 = regression intercept; β1 = ADG (kg/day); and X = experimental day. 

For feed intake, the data considered as biologically unlikely was excluded (feed intake < 0 kg, feed 

intake > 2 kg, feed intake > 1 kg with visit duration less 3 minutes or visit with more than one hour 

long), furthermore, days where a malfunctioning in one feeder was detected the data from all feeders 

in that pen were also excluded. The average data of fresh feed intake was used for estimating the 

average intake in test periods. The dry matter feed intake was obtained by multiplying the fresh feed 

intake data by the percentage of dry matter (after drying it in a < 60 ºC air force oven for 72 h, and 

then multiplying the fresh food for the analytical dry matter) of the feed. 
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The basic model to calculate RFI was similar to the methodology proposed by Koch et al. (1963); 

average FI and ADG estimates were used for linear regressions: 

Y =  µ + S ∗ P ∗ T +  BW0.75  +  ADG +  Ꜫ   

where Y = observed individual daily average feed intake (total food intake into day) express in dry 

matter; µ = is an all animals constant referred to average daily feed intake; S x P ×* T = is composed for 

sex, pen, trial/test; BW0.75 = is the metabolic body weight (MBW) (mid-test body weight elevated to 

0.75 as covariable); ADG = is the daily body-weight gain (g/day, covariable); and  Ꜫ = the residual error 

as RFI (difference between the observed and expected DMI).  

Study of including alternative fixed effects on models of RFI: This study aimed to compare different 

models for the estimation of RFI in Merino lambs, based on data of 577 animals, born in 2018 and 

2019, sired by 16 rams. Models were compared using the Akaike Information Criterion (AIC). A first 

comparison considered the basic model presented above, and then we evaluated the inclusion of the 

following effects: birth type, lambing batch-year, age, rib-eye area, fat thickness, and two estimates of 

wool growth during the test, Trial Clean Fleece Growth and Trial Staple Length Growth, calculated using 

the Wool Production Potential principles. Another analysis was conducted using only 2019 progeny 

when Staple Length Growth (SLG) was recorded during the test. The model was as described above 

but, in this case, estimates of wool growth were SLG, estimated greasy fleece growth based on SLG 

and an average daily gain that did not consider the weight of the wool were included.  

Study of linear versus weekly models for ADG and RFI and different lengths of the feed intake trial: 

For this study 3 (out of 17) feed intake (FI) trials were considered. The objective was to evaluate linear 

versus weekly models to calculate ADG and RFI and to explore if it would be possible to accurately 

estimate RFI and ADG with FI trials shorter than 42 days. Linear ADG was estimated as described 

before. For the weekly ADG, the calculation was done through the difference in the BW of week Y+1 

minus the BW in week Y, divided by seven. Thus, the ADG estimate by linear regression generated only 

one gain value per animal, while weekly inferences generated six values. The FI and BW measurements 

were made with 42, 35, 28, and 21 days on trial. We used the average values of FI and BW for each 

respective period and 6, 5, 4, and 3 average values by week measurements. ADG estimates on 42, 35, 

28, and 21 days on trial were estimated by linear regression and calculated 6, 5, 4, and 3 ADG measures 

by weekly models. 

Two models were used to calculate residual feed intake (RFI). Model 1 was already described. Model 

2, considered the average FI and ADG estimations by week: 

Y𝑟𝑒𝑝  =  µ +  P ∗ T +  PER + BW0.75
𝑟𝑒𝑝  +  ADG𝑟𝑒𝑝  +  Ꜫ 

where Yrep = observed week average individual daily feed intake; µ = is an all animals constant referred 

to average weekly feed intake; P * T = is composed for pen per trial; PER = weeks as covariable; 

BW0.75rep = is the mid-week body weight elevated to 0.75 as covariable); ADGrep = is the daily body-

weight gain by week (g/day, covariable); and  Ꜫ = the residual error as RFI (difference between the 

observed and expected DMI).To estimate RFI in Model 1, a general linear model (PROC GLM) was used, 

to Model 2, the PROC MIXED was performed in SAS software. The R-squares were plotted with 

radarchart function, using the R Package ‘fmsb’. The dominance analysis method was used to compare 

the relative importance of predictors (covariables) in multiple regression model that compose the RFI 

models, using the R Package ‘dominanceanalysis’, the results were plotted using the R Package 

‘ggplot2’. The FI, ADG and the output of RFI models were submitted of Pearson and Spearman 

correlation analysis, using the R Package ‘corrplot’ of software R version 3.5.3. 
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Methane: Data from each bach of methane measurements was transformed considering, BW of the 

animal, the time between measures and start of measurement, gas concentration inside and outside 

of the chamber, temperature and atmospheric pressure, following the procedure described by Jonker 

et al. (2018). Pen, batch, and trial were considered in the models as fixed effects, in addition to other 

fixed effects like RFI group, the breed that will be detailed when necessary. 

Study of contrasting groups for RFI: Within each breed, animals were classified based on percentiles 

from RFI into three RFI groups: High efficiency (>25%), Medium (50%), and Low efficiency (<25%). This 

class was included as a fixed effect in a model that also includes the age of the animal, type of birth, 

sex*test*pen. The effect of RFI group was tested on: Feed intake (FI, kg/d), RFI (by breed), Feed 

conversion ratio (FI/ADG and MEintake/ADG), N° of meals, Staple Length (SL, cm), Backfat depth (mm), 

Ln FEC1, Mid FI test BW (kg), Metabolic BW, SL trial (mm), Yearling BW (kg), Greasy Fleece Weight (kg), 

Clean Fleece Weight (kg), Fiber diameter (µ), Staple Length (cm), FAMACHA, Temperament, BCS at 

FEC1. 

To estimate the effect of RFI group on gas emissions a repeatability mixed model was adjusted (animal 

effect included as random effect), fixed effects of age of the animal, sex*test*pen, and RFI group were 

included. Additionally, the random effects of PAC and day*time of record were also included. 

  

Study of phenotypic correlations between feed intake and other traits and of potential proxies for 

feed intake: Phenotypic correlations between traits that were significantly affected by RFI group in at 

least one breed and gas emissions traits (i.e., FI, RFI, FCR, N°meals, SL, Backfat) were calculated. In 

addition, gas emissions traits were also included in the analyses.  

To study potential additional proxies to estimate FI, a PCA was performed. Only 784 Merino animals 

were included in the dataset. The traits involved in these analyses were: Feed intake (kgDM/d), 

Metabolic Body Weight (kg0.75), Average Daily Gain (ADG, kg), Methane, CO2, and O2 emissions (g/day). 

Following these analyses, a validation by using the data from Dohne and Corriedale breeds was 

performed. Finally, animals were classified into three classes (high, medium, and low intake), and this 

classification was compared to the observed feed intake classification. 

 

7.1.2 On-farm designs 

1. FRANCE (idele/races de france)  

In France, three meat sheep breeds are involved in the recording of new resilience and Efficiency traits: 

Blanche du Massif Central (n=5 farms), Mouton Vendéen (n=5 farms), and Rouge de l’Ouest (n=5 

farms). The collection of phenotypes started in 2019 on ewes and lambs. The objective was to 

phenotype a total of 1,500 ewes per breed and their progeny over two production cycles. 

Phenotypes are presented in figure 29 for ewes (green boxes) and lambs (orange boxes): 
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Figure 29: On-farm phenotyping protocol on ewes and lambs in three French meat sheep breeds 

Most of the collected traits on ewes are body weights, BCS, body composition traits assessed through 

ultra-sound and body measurements at the chest level. From chest width and depth, an approximation 

of chest circumference was calculated. From this chest circumference, we computed a new variable 

(chest_BW ratio) defined as the ratio of chest circumference divided by the body weight. On this on-

farm protocol, metabolite measurements were restricted to beta-hydroxybutyrate measured in two 

specific farms (Ciirpo and Fedatest). Blood samples were analysed directly after sampling with the 

Freestyle Optium Neo H (Abbot company) equipped with Freestyle Optium H β-ketone electrodes 

(Abbot company). These data were not yet all available for analysis, so results are not available for this 

deliverable. 

On lambs, data consisted mainly in body weights recorded at birth, 30 days and 70 days of age and at 

weaning. At birth, they were also scored for their birth assistance (from 0 to 4, with 4 indicating major 

troubles for lambing), their level of activity (from 0 to 3 with 3 indicating a lamb not intending to move), 

and their suckling assistance (from 0 to 3, with 3 indicating a lamb that was not able to suckle by its 

own). Scores given in this study were adapted from the grid proposed by Matheson et al. (2012)., and 

already presented in Tortereau et al. (2018). 

No intake has been registered, even at the pen level. Therefore, no direct link with feed intake nor 

feed efficiency will be established. However, each ewe had phenotypes (body weights and BCS) 

recorded at key points in their production cycle. The objective was to classify ewes based on their 

phenotypes, then to classify lambs based on their own phenotypes (body weights mainly and vigour 

scores), and finally to cross those clusters of ewes and lambs to identify links between ewes and lambs 

status. Each breed was analysed separately.  
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The first step was to correct raw data with environmental factors. For ewes’ traits, residuals were 

retrieved from analyses of variance, including fixed effects of herd/group, the lambing rank, the period 

of the year, litter size, and for BCS-related traits, the BCS operator. For lambs’ traits, residuals were 

retrieved from analyses of variance, including fixed effects of herd/group, period of the year, sex, litter 

size, rearing mode, and rearing type, and, for traits recorded in the abattoir, a fixed effect of the 

abattoir was included. 

Multivariate analyses were performed on the residuals, separately, within each breed, for ewes (with 

Principal Component Analyses (PCA)) and lambs (with Factor Analyses of Mixed Data (FAMD)) datasets. 

The FactoMineR and factoextra R packages were used, and particularly the PCA() and FAMD functions. 

The principal components from those analyses were then used as variables for the classification: we 

applied the Hierarchical Classification on Principal Components with the HCPC() function.  

The final analysis consisted in joining ewe and lamb clusters to identify potential links between some 

clusters.  

 

2. Norway (NSG): 

 

The aim of the Norwegian part of WP1 was to measure methane (CH4) and carbon dioxide (CO2) 

emissions as well as oxygen (O2) consumption of Norwegian White sheep using portable accumulation 

chambers (PAC) and correlate emissions to other traits in the breeding goal. 

Just over 6,000 Norwegian White sheep from 57 commercial ram circle flocks were measured using 

PAC equipment. Flocks from ram circles were chosen as they circulate rams for natural mating within 

the ram circle and in addition are required to use some artificial insemination. The use of common 

rams thus results in genetic connectedness between flocks (Kuehn et al., 2008). 

Ten PAC chambers were placed in the box of a truck, and ten animals were forming a lot measured 

simultaneously. Animals of the same lot were fed the same diet (silage/pasture) for at least 3 days 

prior to measurement. In addition, animals were off feed for at least one and a maximum of four hours 

prior to measurement. The latter ensures stable emissions.  

All measurements were on breeding females where most have lambed at least once or were expected 

to lamb for the first time at the next lambing season. Prior to PAC measurement, animals were 

weighed. 

Fifty-minute CH4 concentration was converted to CH4 g/hr, taking into account the size of the PAC 

chamber, weight of the animal prior to PAC measurement, as well as temperature and air pressure 

outside the chamber. Both CH4 g/hr and ewe weights were scaled, they were divided by the mean of 

the lot and multiplied by the mean of all observations.  

Two different methane traits were defined:  

1) Methane corrected for weight at measurement 

2) Methane corrected for proxy feed intake, where proxy feed intake was defined as sum moles 

of CH4 and CO2 
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Variance Components Estimation 

The methane dataset was merged with ten years of growth and carcass data of traits currently included 

in our routine genetic evaluations from the 57 flocks with PAC measurements. Pedigree was traced as 

far back as possible on animals with data. Variance components were obtained using the Apex linear 

models software licensed by GHPC PTY. LTD., Armidale, Australia.  

 

Breeding value prediction 

The variance components for methane emission and other traits in the breeding goal were utilized to 

predict EBVs for all animals using ssGBLUP.  

 

7.2 Results 

7.2.1 France experimental design 

Divergent lines were initiated in 2014. The first generation of selection has been produced in 2015 and 

2016, the second generation of selection in 2017-2018, and the third generation of selection in 2019-

2020. The first animals from the fourth generation of selection were produced and phenotyped in 

2021. 

The fine-phenotyping was performed in the years 2018 to 2021. In table 35 are listed all the traits 

available.  

Zootechnical traits and RFI calculation:  

Table 35: Description of traits recorded under concentrate and forage-based diets for Romane male 

lambs belonging to divergent lines on RFI. 

Diet trait N Mean ± sd LS Means 
RFI+ 

LS Means 
RFI- 

p-value 
Divergent 
line 

C
o

n
ce

n
tr

at
e 

 

E-BW (kg) 562 54.28±7.18 54.33 54.56 0.33 

ADG (g/d) 562 345.9±61.7 342.9 347.6 0.36 

MD-US (cm) 562 2.76±0.24 2.76 2.76 0.84 

BFT-US (mm) 562 6.05±1.11 6.07 6.25 0.0023 

ADFI (g/d) 562 2025±287 2077 1967 <0.0001 

RFI (g/d) 562 2.84±133.70 59.76 -52.46 <0.0001 

FCR 562 5.99±1.13 6.13 5.81 <0.0001 

Fo
ra

ge
 

 

E-BW (kg) 167 65.4±6.0 65.3 65.0 0.37 

ADG (g/d) 167 124.6±64.2 125 118 0.36 

MD-US (cm) 167 2.71±0.24 2.7 26.9 0.31 

BFT-US (mm) 167 4.52±0.77 4.40 4.60 0.05 

total ADFI (g/d) 167 1828±263 1839 1799 0.17 

Forage daily intake (g/d) 167 1218±226 1234 1195 0.13 

Concentrate daily intake (g/d) 167 642±86    

RFI (from ADFI) (g/d) 167 0±168 16.16 -15.89 0.22 
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Diet trait N Mean ± sd LS Means 
RFI+ 

LS Means 
RFI- 

p-value 
Divergent 
line 

RFI (from forage intake) (g/d) 167 0±152 15.93 -15.47 0.19 

FCR (from ADFI) 167 22.8±60.1 21.8 22.6 0.93 

FCR (from forage intake) 167 15.3±40.9 14.8 15.0 0.98 

 

The effect of the divergent selection was tested on the different performance traits recorded under a 

concentrate or a forage-base diet (Table 35). Under a concentrate diet, main significant differences 

were observed for ADFI, RFI, and FCR. A significant difference was also observed for BFT-US, with 

efficient (i.e., RFI-) lambs having close to 0.18 mm BFT-US more than less efficient animals. Body 

weights, growth, and MD-US were not significantly between RFI+ and RFI- lambs under a concentrate 

diet. Under a forage-based diet, only BFT-US was significantly different between lambs from both 

divergent lines, with efficient lambs having a higher BFT-US (0.20 mm more than less efficient lambs). 

Correlations between traits within each diet are presented in table 36.  

Under both diets, body weights, growth, body composition traits, and average daily feed intake were 

all positively correlated, with correlations ranging from 0.16 (between ADG and BFT-US under a 

concentrate diet) to 0.85 (between E-BW and ADFI under a concentrate diet). By construction, RFI was 

only significantly correlated with feed intake. Under a forage diet, FCR was only significantly correlated 

with ADG (-0.26), whereas, under a concentrate diet, it was also significantly correlated with all the 

other traits except BFT-US. 

Table 36: Phenotypic correlations between traits recorded under concentrate (above the diagonal) 

and forage-based diets (under the diagonal) for Romane male lambs belonging to divergent lines on 

RFI.  
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E-BW (kg)  0.30 0.59 0.35 0.85  0.04  0.34 

ADG (g/d) 0.29  0.16 0.28 0.42  -0.007  -0.68 

MD-US (cm) 0.51 0.20  0.30 0.47  0.0025  0.18 

BFT-US (mm) 0.40 0.21 0.31  0.27  0.02  -0.06 

total ADFI (g/d) 0.63 0.41 0.52 0.36   0.49  0.33 

Forage daily intake 
(g/d) 

0.59 0.28 0.41 0.34 0.94     

RFI (from total ADFI) 
(g/d) 

0.00 0.00 0.00 0.00 0.64 0.63   0.38 

RFI (from forage 
intake) (g/d) 

0.00 0.00 0.00 0.00 0.60 0.68 0.93   
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FCR (from ADFI) -0.03 -0.26 -0.05 -0.08 -0.07 -0.03 -0.04 -0.05  

FCR (from forage 
intake) 

-0.02 -0.26 -0.05 -0.07 -0.06 -0.01 -0.03 -0.03 0.99 

In italics are the correlations that were not significantly different from 0. 

Genotypes: The PCA performed on the genomic relatedness matrix highlighted a clear structuration of 

our experimental population, which was expected (figure 30). RFI divergent lines were associated to 

the first PCs when PCAs were fitted on genomic relatedness matrices (11% of explained variance). 

 

 

Figure 30: Principal component analyses of lamb genomic relatedness matrices 

SNPs are assumed to predict very accurately residual feed intake because of the experimental design 

which rely on families developed over 3-4 generations. Prediction of residual feed intake with SNPs on 

this design reached an accuracy of 0.44 (0.11). We assume that this accuracy is largely over-estimated 

and not reasonably transposable to other populations.  

Ruminal microbiota: Ruminal samples were available for 273 animals under a concentrate diet and on 

167 out of them under a forage-based diet. 

From 16S sequencing: 994 OTUs and 1,328 OTUs were identified on ruminal fluids collected after the 

concentrate and forage-based periods, respectively. OTUs from the 16S sequencing belong to bacteria 

(97% and 93% under a concentrate or forage-based diet, respectively) and archaea.  

From 18S sequencing: 213 OTUs and 224 OTUs were identified from ruminal fluids collected after 

concentrate and forage-based diets, respectively. 

Main environmental factors affecting OTU abundancies are technical factors such as sequencing depth 

and the run of sequencing. 

Under a concentrate diet, OTUs identified with 16s and 18s sequencing best discriminate animals on 

their ADFI level and their phenotypic RFI level, respectively (table 37 and figures 31A and 31B ). 
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Under a forage-based diet, OTUs identified with 16s and 18s sequencing best discriminate animals on 

their phenotypic RFI level and on their genetic line (table 37 and figures 31C and 31D). 

However, the best discriminant analysis reaches a BER of 38.3%, which is too high to predict feed intake 

for genetic predictions correctly. 

Table 37: Balanced Error Rates (BER) from sPLS-DA on 16s and 18s OTUs, with discriminant factors 

being the divergent line, the phenotypic ADFI level, phenotypic RFI level or genetic RFI level. 

Diet Concentrate based-diet Forage based-diet 

Sequencing Lines 
phenotypic 

ADFI 

Phenotypic 

RFI 

RFI 
EBVs 

Lines 
phenotypic 

ADFI 

Phenotypic 

RFI 

16S 45.1% 38.3% 42.1% 41.0% 46.1% 46.3% 45.6% 

18S 45.9% 43.2% 39.6% 48.5% 40.4% 48.7% 45.7% 

ADFI: Average Daily Feed Intake; RFI: Residual Feed Intake; EBV: Estimated Breeding Value.  

 

Figure 31: Components 1 and 2 from sPLS-DA of 16s (A and C) and 18S (B and D) sequencing of ruminal 

microbiota from Romane male lambs fed with concentrate (A and B) or with a forage-based diet (C and 

D). Only the most discriminant factors are represented: Average Daily feed Intake (A), phenotypic RFI 

(B and C), or divergent line (D). 
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NMR: a total of 440 plasmatic and 440 ruminal samples from 2018, 2019, and 2020 were analysed for 

this report. Both fluids were sampled from 273 animals under a concentrate diet and from 167 animals 

(out of the 273) under a concentrate-based diet. 

Raw spectra were analysed with the ASICS (version 2.5.3) R package (Lefort et al., 2019). Under a 

concentrate diet, 34 and 44 metabolites were detected in plasmatic and ruminal samples respectively, 

and assigned relative concentrations. Under a forage-based diet, 23 and 19 metabolites were detected 

in plasmatic and ruminal samples, respectively, and assigned relative concentrations.  

Under a concentrate diet, citrate and malate were the two metabolites with a VIP value higher than 

1.5 when 8 components were retained. Under a forage-based diet, only citrate had a VIP value higher 

than 1.5 when 6 components were retained (figure 32). 
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Figure 32: Partial least squares – discriminant analyses for plasmatic metabolites in Romane male 

lambs fed concentrate (A) or forage-based (B) diets. Efficient and less efficient individuals are 

presented in yellow dots and blue diamonds, respectively.  

No metabolite could be identified as significantly different between lambs from both divergent lines, 

from the ruminal fluid, whatever the diet. 

SPIR on faecal samples: The prediction of feed efficiency (RFI or FCR) was only performed on 2018 

animals, whereas prediction of feed intake was performed on 2018, 2019 and 2020 animals. From this 

subset of data, the prediction returned low R²CV (table 38) or both traits. 

Feed intake was well predicted (R²CV = 0.72) when both diets were considered jointly. 

Table 38: Calibration and validation statistics of PLS on faecal NIRS to predict feed intake (FI) (g/kg 

Metabolic Weight(MW) or g/kg live weight) , RFI and FCR of Romane male lambs divergently selected 

on RFI, considering separately or jointly two periods of control (under a concentrate diet or a forage-

based diet). 

 Predicted trait N SEC R²C SECV R²CV 

C
o

n
ce

n
tr

at
e

 d
ie

t 

RFI 91 129.79 0.11 137.61 0.02 

FCR 91 0.92 0.12 0.96 0.04 

FI 15 days (g/kg MW) 261 9.37 0.27 9.73 0.21 

FI 5 days (g/kg MW) 257 10.63 0.22 11.06 0.20 

FI 2  days (g/kg MW) 244 12.58 0.34 13.07 0.29 

FI 15  days (g/day) 262 263 0.16 270 0.12 

FI 5  days (g/day) 268 300 0.16 304 0.14 

FI 2  days (g/day) 249 307 0.20 314 0.16 

Fo
ra

ge
-b

as
ed

 d
ie

t 

FCR 47 9.58 0.17 9.70 0.15 

FI 15  days (g/kg MW) 161 7.54 0.36 8.71 0.19 

FI 5  days (g/kg MW) 163 8.91 0.42 9.50 0.34 

FI 2  days (g/kg MW) 163 10.67 0.51 11.48 0.42 

FI 15  days (g/day) 164 227 0.33 248 0.19 

FI 5  days (g/day) 164 231 0.46 256 0.34 

FI 2  days (g/day) 164 265 0.55 303 0.40 

B
o

th
 d

ie
ts

 FCR 141 3.59 0.62 3.98 0.61 

FI 15  days (g/kg MW) 423 8.78 0.74 9.14 0.72 

FI 5  days (g/kg MW) 423 9.73 0.75 10.42 0.72 
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15N on plasma: The Δ15N biomarker, which is the difference between the natural abundancy of 15N 

measured in plasma and the natural abundancy of 15N measured in the feed has been calculated in a 

subset of 71 Romane male lambs born in 2019 and fed successively with concentrate and a forage-

based diet. The Δ15N biomarker was not correlated with RFI, whatever the diet. However, it was 

correlated under a forage diet with FCE, which is the ratio between ADG and feed intake (figure 33).  

The correlations between Δ15N biomarker and feed intake were equal to 0.35 (under a concentrate 

diet) and to 0.33 (considering the quantity of forage intake under a forage-based diet). 

 

 

Figure 33: Feed efficiency traits (FCE on the top and RFI at the bottom) according to Δ15N (plasma – 

food) under two diets (100% concentrate and 1/3 concentrate + 2/3 forage, on the left and right 

respectively). 

 

FI 2  days (g/kg MW) 413 12.47 0.67 13.07 0.63 

FI 15  days (g/day) 429 266 0.40 272 0.37 

FI 5  days (g/day) 430 279 0.47 286 0.46 

FI 2  days (g/day) 412 284 0.52 298 0.47 

 N = number of samples; SEC = standard error of calibration; R²C = determination 
coefficient of calibration ; SECV = standard error of cross-validation; R²CV = 
determination coefficient of cross-validation.  
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Data integration: Integration of fixed effects, body weight and transformed microbiota abundances 

has been published in Le Graverand et al., 2023. To summarize: 

-  under a concentrate diet, when host feed efficiency was predicted from microbiota data 

only, the average correlations between actual traits and predictions were almost null for 

REI (0.11 for 16S compared to 0.06 for 18S data) or low to moderate for FCR (0.35 for 16S, 

0.16 for 18S). Under a mixed diet, predicting REI led to low average correlations (0.35 with 

16S, 0.17 with 18S).  

- Predicting energy intakes with 16S or 18S data led to a large range of correlations: from 

0.05 with 18S under a concentrate diet to 0.56 with 16S under a mixed diet. 

- Regardless of diet and trait, average correlations for predictions from fixed effects and 

body weight ranged from 0.31 to 0.84. Furthermore, correlations were significantly higher 

than predictions derived from microbiota data only. 

- Finally, combining microbiota data with fixed effects and final BW never significantly im-
proved correlations compared to predictions from fixed effects and BW. Most of the cor-
relations were not significantly different. 
 

Results of the integration of 6 different omics and non-omics datasets are presented in Le Graverand 

et al., 2023 (b). When RFI was predicted with our approach combining different omics, accuracy 

increased and reached an average of 0.55 (0.11). Based on weights attributed to blocks of predictors, 

we were able to rank the most predictive blocks to explain RFI: SNPs, fixed effets (and covariate), 

plasma NMR, ruminal 16S abudances, long chain fatty acids and volatile fatty acids. Furthermore, 

within each block we identified variables that were highly associated with feed efficiency RFI, including 

β-hydroxyisovaleric acid and a SNP located on the chromosome 3. To conclude, blending models is 

useful to integrate heterogeneous omics data: from predicting efficiency, to identifying associations 

between multi-omics predictors. 

 

7.2.2 Norway (NSG): 

 

Phenotypic results are presented in Table 39.  

Table 39 - Phenotypic average (SD) of CH4, body weight and CH4 / (CH4 + CO2) 

Trait Average (SD) 

CH4 gr/hr 1.34 (0.27) 

Body weight, kg 83.08 (9.87) 

CH4 mol / (CH4 + CO2) mol 0.05 (0.01) 

 

Heritability estimates for weight corrected methane emission and for feed intake proxy corrected 

methane emission are shown below in Table 40, and genetic correlations between methane emission 

and traits currently included in the Total Merit Index are shown in Table 41. 
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Table 40 - Heritability of weight corrected methane emission, and for feed intake proxy corrected 

methane emission 

Trait Heritability 

Weight corrected methane emission 0.18 

Feed intake proxy corrected methane emission 0.34 

 

Table 41 - Genetic correlations between methane traits and traits in the breeding goal 

Trait 
Birth 

Weight 
Carcass 
Weight 

EUROP 
Carcass 
Classifi-
cation 

EUROP 
Fat 

Grading 

Birth 
Weight 
(mat.) 

42-day 
Weight 
(mat.) 

Carcass 
Weight 
(mat.) 

Fleece 
Weight 

Fleece 
Grade 

Weight 
corrected 
methane 

-0.11 0.02 -0.08 -0.27 0.23 0.32 0.25 0.04 0.07 

Feed 
intake 
proxy 

corrected 
methane 

-0.08 -0.18 0.04 0.00 0.00 0.16 0.18 0.05 0.05 

 

Preliminary estimates show heritabilities of 18% for gram methane per hour corrected for body weight, 

and 34% for mol methane corrected for feed intake proxy (sum moles methane and carbon dioxide). 

Genetic correlations were positive and antagonistic between weight corrected methane emission and 

maternal genetic effects of birth weight, 42-day weight, and carcass weight, indicating proper 

weighting needs to be applied if including weight corrected methane emission in the total merit index 

not to get adverse response in these traits when selecting for reduced methane emission. On the 

contrary, genetic correlations between feed intake proxy corrected methane emission and traits in the 

breeding goal were close to zero indicating that it should be possible to include feed intake proxy 

corrected methane emission in the total merit index without antagonistic response in traits already 

included in the breeding goal.   

The studied gas traits look promising, but more work is needed to explore additional gas trait 

definitions and the expected response in traits already included in the breeding goal for Norwegian 

White Sheep.  

In summary, the mechanics is in place to compute breeding values for methane emission. 

Implementation in the breeding goal however requires continued phenotyping in years to come. 

 

7.2.3 INIA-Uruguay 

Descriptive statistics 

Descriptive statistics of the traits recorded during feed intake trials are presented in table 42. 

Corriedales were the youngest animals at the moment of the test, while Dohnes were the oldest and 

Merinos intermediate. While only females are evaluated for Corriedale and Dohne, in Merino, both 
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sexes were considered. Independently of the age and BW at the moment of the test, the three breeds 

presented a feed intake from 3 to 3.5% of BW and ADG between 160 to 200 g/d.  

Table 42: Descriptive statistics (number of animals, mean, standard deviation) for traits related to 

efficiency by breed (INIA progeny 2018-2020 and CIEDAG 2017 for Corriedale).  

 Corriedale Dohne Merino 

Label N Mean sd N Mean sd N Mean sd 

age at test (days) 281 222 61 214 421 9 811 288 45 

age at weaning (days) 149 112 8 214 132 27 578 136 12 

Rib eye area (cm2) 281 6.62 1.47 214 9.94 2.02 810 7.55 1.48 

Backfat depth (mm) 281 2.38 1.15 214 2.81 0.88 810 2.10 0.70 

N° of meals 281 55.07 17.15 214 82.19 14.87 811 61.38 17.83 

ADG (kg/d) 281 0.166 0.046 214 0.181 0.050 811 0.202 0.068 

R2 ADG 281 0.91 0.08 214 0.87 0.08 811 0.90 0.08 

Feed intake (kgDM/d) 281 1.13 0.27 214 1.54 0.24 811 1.36 0.25 

Feed Intake (MjME/d) 281 2.71 0.73 214 3.81 0.68 811 3.32 0.64 

Feed conversion ratio (FI/ADG) 281 7.12 2.02 214 9.02 2.39 811 7.29 2.11 

Feed conversion ratio 
(ME/ADG) 

281 17.00 4.91 214 22.22 5.89 811 17.76 4.95 

Mid FI test BW (kg) 281 33.57 5.11 214 49.99 5.62 811 40.77 6.20 

Metabolic BW (kg) 281 13.92 1.60 214 18.78 1.59 811 16.10 1.83 

BW gain on trial (kg) 280 6.74 2.09 210 7.96 2.30 805 8.06 2.74 

Methane (g/d) 218 16.44 4.85 208 28.15 5.74 784 23.36 5.45 

CO2 (g/d) 218 829 183.8 208 1484 344.0 784 1086 233 

O2 (g/d) 218 847 160.0 208 1322 325.5 784 1000 190 

Methane intensity (g/kgBW-
gain) 

218 0.43 0.11 208 0.54 0.10 784 0.54 0.10 

Methane yield (g/kgDM24h) 218 11.36 2.56 208 15.11 3.67 784 14.33 2.95 

Staple length trial (mm) 147 19.43 5.85 128 18.31 2.51 546 18.47 6.88 

RFI (breed) 281 0.00 0.14 214 -0.01 0.13 811 -0.01 0.13 

age at Shearing (days) 149 398 7 212 396 7 578 412 9 

FEC 1 176 1718 2214 206 2013 2233 557 2696 1969 

Ln FEC1 176 6.75 1.35 206 6.97 1.34 557 7.67 0.80 

Yearling BW (kg) 193 35.45 4.73 213 42.68 5.18 575 49.30 11.55 

Greasy Fleece Weight (kg) 194 3.25 0.48 213 2.62 0.39 575 4.12 0.70 

Clean Fleece Weight (kg) 192 2.43 0.36 210 1.98 0.31 572 3.08 0.55 

Fiber diameter (µ) 192 23.23 1.72 210 18.28 1.35 577 14.87 0.92 

Staple length (cm) 192 12.46 1.77 210 10.07 1.36 577 10.96 1.30 

FAMACHA 1 147 1.6 0.6 213 2.1 0.7 576 2.2 0.9 

Temperament 148 42.68 24.76 213 67.65 30.62 569 59.91 30.11 

Body condition score at FEC1 149 3.0 0.3 213 3.1 0.4 576 2.9 0.4 

 

Models 

The results indicated that the basic model (sex-pen-trial, ADG, MW) is the most parsimonious for both 

analyses; the other fixed effects, body composition, and fleece growth traits were not significant 

(p>0.05) (AIC difference >2). Furthermore, RFI values estimated with the basic and alternative models 

were highly correlated (r=0.99). In conclusion, it might not be necessary to include estimations of wool 

growth during 42-day tests in RFI models when evaluating Merino sheep (Marques et al., 2021). 
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Pearson and Spearman correlations between RFI linear and weekly 42-days models were 0.93 and 0.92, 

respectively. The 35-days length models (linear and weekly) presented Pearson and Spearman 

correlations greater than 0.98 with the 42-days models. The RFI models with 35 days allowed to 

decrease seven days the FI test maintaining accuracy and explaining 75.3% and 63.6% of the FI by the 

linear and weekly models, respectively (Amarilho et al., submitted). 

RFI Contrasting groups 

The association between Predicted and Observed Feed Intake (kg DM/day) by breed is presented in 

figure 34. High, medium, and low RFI animals are present at any observed intakes (low, medium, or 

high). 

 

 

 

Figure 34: Predicted Feed Intake vs Observed Feed Intake (kgDM/day) by RFI group for Corriedale, 

Merino and Dohne breeds. 

The RFI group had a significant effect (p<0.05) on FI, FCR, RFI, and the number of meals, regardless of 

the breed (Table 43).  

Table 43: RFI group effect on feed intake, feed conversion ratio, RFI and behaviour for all breeds (all 

p<0.05)(means±sd) 

Breed Corriedale Dohne Merino 

RFI group High Medium Low High Medium Low High Medium Low 
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Breed Corriedale Dohne Merino 

FI (kgDM) 0.97±0.02 1.12±0.01 1.27±0.02 1.34±0.02 1.52±0.01 1.70±0.02 1.18±0.01 1.33±0.01 1.50±0.01 

FCR (MJEM) 14.8±0.54 16.4±0.47 19.7±0.62 19.9±0.79 22.2±0.55 24.5±0.79 15.5±0.27 18.0±0.18 20.7±0.26 

FCR (kgDM) 6.2±0.23 6.9±0.20 8.3±0.26 8.1±0.32 9.1±0.22 10.0±0.32 6.4±0.11 7.4±0.08 8.5±0.11 

RFI -0.14±0.01 0.00±0.01 0.16±0.01 -0.18±0.01 -0.01±0.01 0.16±0.01 -0.16±0.00 -0.01±0.00 0.15±0.00 

N° Meals 44.1±1.65 56.3±1.46 66.9±1.91 73.9±1.90 81.6±1.33 91.5±1.92 52.9±1.00 60.4±0.69 72.5±0.98 

 

In terms of GHG emissions (table 44), the RFI group affected the total methane only in the Merino 

breed (p<0.05), where the less efficient animals emitted 6.6% more methane. Alternatively, the RFI 

group affected the methane emission corrected by feed intake in the model (methane g/d FI 24-48-72 

hours) or as precorrection (methane g/DMI 24hs). In all cases, the more efficient animals had higher 

methane yields than less efficient ones. Only in the Merino breed were observed a tendency in 

methane intensity (p=0.0538) affected by the RFI group. More efficient animals tended to emit 10% 

less methane by kg of body weight gain (21 days before each methane record). In the case of CO2, 

more efficient animals had lower emissions in Dohne and Merino breeds (p<0.05), 6.8 and 4.8%, 

respectively.  

Table 44: RFI group effect on GHG emissions reported as total methane, methane yield, methane 

intensity, and CO2 for Corriedale, Dohne, and Merino breeds 

Breed Corriedale Dohne Merino 

RFI group High Medium Low High Medium Low High Medium Low 

Methane (g/d) 16.3a 16.2a 16.7a 26.6a 28.2a 27.8a 22.6 22.9 24.1 

Methane yield (g/d) (by FI 24-48-72hs) 17.2 16.2 15.7 28.7 28.5 26.9 24.8 23.3 22.6 

Methane yield (g/kgDM 24hs) 5.7 5.0 4.3 7.5 6.8 6.0 7.0 6.4 5.9 

Methane intensity (g/kgBWG) 4.6a 4.4a 4.9a 9.6a 8.8a 9.2a 6.9 7.1 7.5 

CO2 (g/d) 830.9a 831.7a 851.2a 1354.8 1438.4 1446.5 1056.7 1063.6 1107.1 

 

In the Corriedale breed, the RFI group also significantly affected the staple length where the less 

efficient animals have longer wool. In Merino, more efficient animals were slightly leaner than the low 

efficient group (table 45).  

 

Table 45: Contrast by RFI group for Corriedale and Merino breeds 

 RFI group   

 High Medium Low Breed P 

Staple length (cm) 11.9±0.37 12.8±0.33 12.8±0.34 Corriedale <0.05 

Staple length (cm) 10.8±0.10 10.9±0.07 11.1±0.09 Merino 0.0801 

Backfat (g/kgBWG) 2.01±0.04 2.08±0.03 2.19±0.04 Merino <0.05 

Fiber diameter (µ) 22.4±0.41 23.1±0.36 23.4±0.37 Corriedale 0.535 
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Phenotypic correlations 

Moderate correlations were estimated between FI and RFI in the three studied breeds (tables 46, 47 

and 48). The correlation between GHG emissions and FI also presented moderated correlations, being 

CO2 the trait with higher correlations with FI within each breed. In relation to RFI, the number of meals 

and CH4 yield were the most correlated traits, again within each breed.  

Table 46: Phenotypic correlations for traits related to efficiency for the Corriedale breed.  

Corriedale RFI FCR Nmeals SL Backfat CH4 CO2 O2 CH4 

intensity 
CH4 

yield 

Feed intake (kg/d) 0.74 0.23 0.55 0.40 0.16 0.60 0.65 0.56 0.35 -0.39 

RFI (breed)   0.42 0.53 0.28 -0.03 0.28 0.22 0.15 0.27 -0.52 

Feed CR (FI/ADG)     0.25 0.16 0.01 0.11 -0.03 -0.15 0.08 -0.12 

N° of meals       0.20 0.05 0.32 0.43 0.41 0.25 -0.23 

Staple Length (cm)         -0.06 0.43 0.27 0.27 0.39 -0.11 

Backfat depth (mm)           -0.08 0.20 0.11 -0.25 -0.04 

Methane (g/d)             0.72 0.61 0.88 0.23 

CO2 (g/d)               0.84 0.49 0.11 

O2 (g/d)                 0.42 0.11 

CH4 intensity (g/kgBW)                   0.26 

 

Table 47: Phenotypic correlations for traits related to efficiency for the Dohne breed.  

Dohne RFI FCR Nmeals SL Backfat CH4 CO2 O2 CH4 

intensity 
CH4 

yield 

Feed intake (kg/d) 0.61 0.02 0.38 -0.09 0.39 0.38 0.70 0.64 -0.01 -0.43 

RFI (breed)   0.30 0.44 0.03 0.09 -0.02 0.16 0.15 -0.04 -0.51 

Feed CR (FI/ADG)     -0.13 -0.05 -0.05 -0.05 -0.04 -0.03 -0.03 0.03 

N° of meals       0.13 0.09 0.02 0.08 0.08 0.00 -0.31 

Staple Length (cm)         -0.20 -0.02 -0.31 -0.34 0.06 0.11 

Backfat depth (mm)           0.07 0.45 0.45 -0.19 -0.24 

Methane (g/d)             0.52 0.42 0.85 0.49 

CO2 (g/d)               0.96 0.13 -0.16 

O2 (g/d)                 0.05 -0.20 

CH4 intensity (g/kgBW)                   0.63 

 

Table 48: Phenotypic correlations for traits related to efficiency for the Merino breed.  

Merino RFI FCR Nmeals SL Backfat CH4 CO2 O2 CH4 

intensity 
CH4 

yield 

Feed intake (kg/d) 0.57 -0.22 0.29 0.32 0.24 0.64 0.80 0.74 0.19 -0.23 

RFI (breed)   0.20 0.30 0.13 -0.02 0.18 0.28 0.22 0.21 -0.42 

Feed CR (FI/ADG)     0.24 -0.19 0.07 -0.15 -0.34 -0.35 -0.15 0.09 

N° of meals       -0.02 0.17 0.23 0.13 0.11 0.03 -0.04 

Staple Length (cm)         -0.07 0.25 0.30 0.35 0.16 -0.05 

Backfat depth (mm)           0.16 0.17 0.11 -0.16 0.06 

Methane (g/d)             0.71 0.66 0.75 0.41 

CO2 (g/d)               0.93 0.37 -0.03 
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Merino RFI FCR Nmeals SL Backfat CH4 CO2 O2 CH4 

intensity 
CH4 

yield 

O2 (g/d)                 0.32 -0.01 

CH4 intensity (g/kgBW)                   0.43 

 

Principal component analysis for Feed Intake 

Descriptive statistics of the traits involved in the PCA are presented in Table 49.  

Table 49: Descriptive Statistics for the traits analysed for PCA by breed. 

Breed Trait N Mean sd min max 

Corriedale Metabolic BW (kg) 281 13.9 1.6 9.6 18.3 

ADG (kg) 281 0.166 0.046 0.030 0.274 

Methane (g/d) 218 16.4 4.8 5.7 28.5 

CO2 (g/d) 218 828.9 183.8 404.3 1447.7 

O2 (g/d) 218 847.0 160.0 445.8 1315.8 

Dohne Metabolic BW (kg) 214 18.8 1.6 13.8 22.9 

ADG (kg) 214 0.181 0.050 0.079 0.325 

Methane (g/d) 208 28.1 5.7 15.7 50.6 

CO2 (g/d) 208 1483.6 344.0 850.2 2537.8 

O2 (g/d) 208 1321.5 325.5 774.1 2734.0 

Merino Metabolic BW (kg) 811 16.1 1.8 11.7 23.2 

ADG (kg) 811 0.202 0.068 0.055 0.469 

Methane (g/d) 784 23.4 5.4 8.9 44.7 

CO2 (g/d) 784 1086.2 232.5 533.9 2269.6 

O2 (g/d) 784 1000.3 189.4 560.9 2114.7 

 

The PCA 1 explains 68.54% of the total variance. The correlation between PCA 1 and the observed FI 

was 0.82 for Australian Merino (figure 35). Therefore, with two estimates of GHG emission in portable 

accumulation chambers, in addition to measures of BW and ADG, it would be possible to have an 

estimation of feed intake. 
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Figure 35: PCA 1 vs. observed feed intake for Australian Merino (r= 0.82). 

Table 50: Eigenvectors for the five principal components. 

  PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Metabolic BW 0.405 0.594 -0.360 0.594 0.023 

ADG (kg) 0.396 -0.644 0.321 0.569 -0.037 

Methane (g/d) 0.421 0.419 0.764 -0.245 0.064 

CO2 (g/d) 0.505 -0.112 -0.275 -0.371 -0.720 

O2 (g/d) 0.497 -0.211 -0.330 -0.354 0.689 

 

To validate the results obtained with Merino, the eigenvectors of PCA 1 obtained (Table 50) were 

multiplied by the standardized values of the five analysed traits of Corriedale and Dohne breeds to 

calculate a PCA 1 estimated for each breed. The correlation between these estimated PCA 1 vs 

observed feed intake was 0.7341 and 0.7338 for Corriedale, Dohne, and Merino, respectively 

(figure 36). 

 

Figure 36: PCA 1 estimated from Merino data vs. observed feed intake for Corriedale and Dohne 

breeds. 
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Animals were classified based on percentiles from PCA 1 (from PCA analysis for Merino and estimated 

for Corriedale and Dohne) into three classes: High (>25%), Medium, and Low PCA (<25). A confusion 

matrix between these classes and observed FI is presented in table 51. In conclusion, the PCA 

estimated class can help to predict if an animal has high or low feed intake based on traits that can be 

recorded under field conditions. The false-negative and positive rates were almost zero. 

Table 51 - Confusion matrix: percentage of animal classified by observed feed intake and PCA 

    1. High PCA 2. Medium PCA 3. Low PCA 

Corriedale  
n=218 

1. High FI 53.7 46.3 0.0 

2. Medium FI 22.9 61.5 15.6 

3. Low FI 0.0 32.7 67.3 

Dohne 
n=208  

1. High FI 61.5 38.5 0.0 

2. Medium FI 18.3 62.5 19.2 

3. Low FI 1.9 36.5 61.5 

Merino  
n=784 

1. High FI 73.5 26.0 0.5 

2. Medium FI 13.3 73.2 13.5 

3. Low FI 0.0 27.6 72.5 

 

7.2.4 France (on-farm) 

 

Three breeds collected phenotypes on ewes and lambs. By the end of August 2021, more than 5,300 

ewes and 8,600 lambs had been phenotyped (table 52). Few data were retrieved from the 

slaughterhouses, particularly for the Mouton Vendéen and Rouge de l’Ouest breeds. 

Table 52: Number of individuals (ewes and lambs) phenotyped on-farm in three French meat sheep 

breeds. 

Filtering Blanche du Massif 
Central 

Mouton Vendéen Rouge de l’Ouest 

EWES 

no filtering 2,579 1,534 1,198 

with data before and 
after one lambing 

650 753 489 

LAMBS 

no filtering 5,754 2,798 56 

with carcass data 1,222 9 0 

Pairs of ewes and lambs with complete datasets 

no filtering 572 ewes with 932 
lambs 

532 ewes with 823 
lambs 

27 ewes with 45 lambs 

 

The description of phenotypes in ewes and lambs is given in tables 53 and 54, respectively. For ewes, 

this description was done over all stages of the production cycle. 



  SMARTER – Deliverable D1.1 
 

 

S M A R T E R  -  H 2 0 2 0                                            P a g e  62 | 

123 

 

Table 53: descriptive statistics of traits recorded on ewes in three French meat sheep breeds. N gives 

the number of records. 

Ewe Traits 
Blanche du Massif Central Mouton Vendéen Rouge de l’Ouest 

n mean±sd 
[min;max] 

n mean±sd 
[min;max] 

n mean±sd 
[min;max] 

Body weight 
(kg) 

8,867 68.34±11.26 
[34.00;125.00] 

3,902 61.14±11.45 
[33.20;103.00] 

2,692 67.55±14.22 
[31.00;113.00] 

BCS 10,544 2.43±0.70 
[1.00;5.00] 

6,591 2.98±0.84 
[1.00;5.00] 

2,723 3.20±0.77 
[1.00;5.00] 

Chest width 
(cm) 

15,777 25.45±2.49 
[14.00;54.00] 

6,794 25.64±3.12 
[17.00;39.0] 

2,746 27.06±3.57 
[16.70;40.00] 

Chest depth 
(cm) 

15,777 32.14±2.53 
[19.40;62.80] 

6,790 32.88±2.88 
[16.50;69.00] 

2,747 34.06±3.24 
[21.00;77.60] 

Shoulder 
height (cm) 

11,332 60.56±3.78 
[49.50;73.00] 

5,603 59.28±3.81 
[45.00;71.00] 

2,234 62.96±3.68 
[50.90;74.00] 

BFT-US (mm) 2,700 6.27±1.92 
[2.40;16.00] 

851 4.62±2.03 
[1.90;13.30] 

840 4.76±1.45 
[1.70;11.70] 

MD-US (mm) 2,700 26.65±3.12 
[16.85;35.6] 

851 25.14±3.95 
[14.15;39.95] 

840 26.61±3.42 
[15.50;35.05] 

Chest 
circumference 
(cm) 

15,777 182.26±13.98 
[114.90;299.99] 

6,790 185.51±16.38 
[125.14;319.18] 

2,746 193.51±19.23 
[135.42;369.44] 

chest/BW 
ratio (cm/kg) 

8,867 2.74±0.36 
[1.78;5.80] 

3,850 3.10±0.46 
[1.84;7.80] 

2,691 2.95±0.48 
[1.84;5.69] 

 

Table 54: descriptive statistics of traits recorded on lambs in three French meat sheep breeds. N gives 

the number of records. TW30d = typical weight at 30 days. 

Lamb Traits 
Blanche du Massif Central Mouton Vendéen Rouge de l’Ouest 

n mean±sd 
[min;max] 

n mean±sd 
[min;max] 

n mean±sd 
[min;max] 

Birth weight 
(kg) 

6,044 4.77±1.01 
[1.30;8.20] 

2,741 4.18±0.94 
[1.20;7.70] 

58 4.83±1.13 
[2.50;7.50] 

TW30d (kg) 5,483 12.57±2.70 
[3.90;23.00] 

2,644 11.35±2.81 
[3.50;19.90] 

59 13.16±2.47 
[8.00;19.00] 

ADG 0-30d 
g/d) 

5,363 257.33±74.25 
[-83.33;550.00] 

2,481 239.14±79.83 
[10.00;506.67] 

57 275.50±75.60 
[100.00;446.67] 

       

 

On the subset of ewes having data before and after one lambing, a PCA was performed on the residuals 

from the linear model, taking into account main environmental factors. No multivariate was performed 

on the Rouge de l’Ouest breed because not enough data were available by the analysis. 

In the Blanche du Massif Central breed, the first two axes accounted for 59.3% of the total variance. 

The main contributing traits to the first axis were the body weights (before and after lambing), the 

chest/BW ratio (before and after lambing), and the chest circumference before lambing. The second 
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axis was mainly characterised by the evolution of traits before and after lambing: the difference in 

body weights, the difference in chest/BW ratio and the difference in BCS. 

In the Mouton Vendéen breed, the first two axes of the PCA accounted for 55% of the total phenotypic 

variance. The main contributing traits to the first axis were mainly the ones recorded before lambing: 

body weight, chest/BW ratio, and the chest circumference, as well as the body weight recorded after 

lambing. The most contributing variables to the second axis were the difference in body weight, BCS 

and chest/BW ratio before and after lambing, and the traits recorded after lambing: body weight, BCS 

and chest/BW ratio. 

A FAMD analysis was performed on the lambs dataset. In the Mouton Vendéen and Blanche du Massif 

Central breeds, the first two axes accounted for 19.4% of the total variance (with axis 1 accounting for 

10.8% and 12.2% for the Mouton Vendéen and Blanche du Massif Central breed, respectively). The 

first axis was mainly affected by body weights (at birth and at 30 days of age) and ADG between birth 

and 30 days, whereas the second axis was mainly affected by vigour traits. 

For the Blanche du Massif Central breed, the HCPC returned 4 and 3 clusters for ewes and lambs, 

respectively. In the Mouton Vendéen breed, the HCPC returned 3 clusters for ewes and lambs. 

Regarding lambs, the three clusters had similar characteristics whatever the breed with: 

- Cluster A (1,918 Blanche du Massif Central and 1,139 Mouton Vendéen lambs): lambs with 

lower body weights and growth performances than the breed average 

- Cluster B (274 Blanche du Massif Central and 7 Mouton Vendéen lambs): lambs with body 

weights and growth performances equal to the breed average 

- Cluster C (2,722 Blanche du Massif Central and 1,166 Mouton Vendéen lambs): lambs with 

higher body weights and growth performances than the breed average 

 

Regarding ewes, two clusters were similar between both breeds: 

- Cluster A (197 Blanche du Massif Central and 159 Mouton Vendéen ewes): ewes with BCS, 

body weight, and chest circumference before lambing close to the average of the breed, 

but with BCS, body weight and chest circumference after lambing higher than the average 

of the breed. In this cluster, the difference between traits recorded before and after 

lambing is higher than the average of the breed. Ewes in this cluster also have a higher 

shoulder height than the average of the breed. 

- Cluster B (102 Blanche du Massif Central and 186 Mouton Vendéen ewes): ewes with BCS, 

body weight, and chest circumference before lambing higher than the average of the 

breed, and with BCS body weight and chest circumference after lambing close to the 

average of the breed. In this cluster, the difference between traits recorded before and 

after lambing is lower than the average of the breed. Ewes in this cluster also have a 

shoulder height close to the average of the breed. 

- Cluster C (144 Blanche du Massif Central ewes): ewes with BCS body weight and chest 

circumference before lambing close to the average of the breed, but with BCS, body 

weight, and chest circumference after lambing lower than the average of the breed. In this 

cluster, the difference between traits recorded before and after lambing is lower than the 
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average of the breed. Ewes in this cluster have a shoulder height lower than the average 

of the breed. 

- Cluster D (222 Mouton Vendéen ewes): ewes with BCS, body weight, and chest 

circumference before and after lambing lower than the average of the breed. In this 

cluster, the difference between traits recorded before and after lambing is lower than the 

average of the breed. Ewes in this cluster have a shoulder height lower than the average 

of the breed. 

- Cluster E (214 Blanche du Massif Central ewes): ewes with BCS, body weight, and chest 

circumference before lambing lower than the average of the breed, but with BCS, body 

weight, and chest circumference after lambing and shoulder height close to the average of 

the breed. In this cluster, the difference between traits recorded before and after lambing 

is higher than the average of the breed. 

Finally, when lambs and ewes’ clusters were analysed jointly, we did not observe clear links between 

them in any of both breeds (tables 55 and 56).  

 

Table 55: Distribution of ewes and lambs from the Blanche du Massif Central Breed among the 

different clusters defined based on the data. 

 Ewes cluster A 
(n=267) 

Ewes cluster B 
(n=150) 

Ewes cluster C 
(n=210) 

Ewes cluster E 
(n=302) 

Lambs cluster A 
(n=364) 

38% of ewes from 
cluster A  
27% of lambs 
from cluster A 

38% of ewes from 
cluster B  
16% of lambs 
from cluster A 

43% of ewes from 
cluster C  
25% of lambs 
from cluster A 

38% of ewes from 
cluster E  
32% of lambs 
from cluster A 

Lambs cluster B 
(n=58) 

7% of ewes from 
cluster A  
31% of lambs 
from cluster B 

7% of ewes from 
cluster B  
17% of lambs 
from cluster B 

5% of ewes from 
cluster C  
19% of lambs 
from cluster B 

6% of ewes from 
cluster E  
33% of lambs 
from cluster B 

Lambs cluster C 
(n=507) 

55% of ewes from 
cluster A  
30% of lambs 
from cluster C 

55% of ewes from 
cluster B  
16% of lambs 
from cluster C 

52% of ewes from 
cluster C  
21% of lambs 
from cluster C 

56% of ewes from 
cluster E 
33% of lambs 
from cluster C 

 

Table 56: Distribution of ewes and lambs from the Mouton Vendéen breed among the different 

clusters defined based on the data. 

 Ewes cluster A 
(n=207) 

Ewes cluster B 
(n=295 

Ewes cluster D 
(n=323) 

Lambs cluster A 
(n=364) 

43% of ewes from 
cluster A  
25% of lambs from 
cluster A 

36% of ewes from 
cluster B  
29% of lambs from 
cluster A 

52% of ewes from 
cluster D  
46% of lambs from 
cluster A 

Lambs cluster C 
(n=461) 

57% of ewes from 
cluster A  

64% of ewes from 
cluster B  

48% of ewes from 
cluster D  
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 Ewes cluster A 
(n=207) 

Ewes cluster B 
(n=295 

Ewes cluster D 
(n=323) 

25% of lambs from 
cluster C 

41% of lambs from 
cluster C 

34% of lambs from 
cluster C 

 

From the clustering analysis, we cannot highlight any trend between the evolution of ewes’ conditions 

(from their BCS and BW) and the performances of their lambs (until 30 days of age). 

Regarding beta-hydroxybutyrate records with the Abbot kit, a total of 756 measures were recorded on 

ewes: 368 during gestation and 388 at weaning of their lambs. 

 

7.3 Main results in meat sheep 

 A total of 2,227 meat sheep have been analysed in experimental farms, and 19,919 meat sheep (ewes 

and lambs) were analysed in commercial farms. Body weights and body composition traits were the 

main recorded traits. 

In commercial farms, no feed intake was recorded, but in experimental farms (including test stations 

for individual control of performances), total feed intakes were recorded with different devices. 

Therefore, feed efficiency traits and the quality of proxies were assessed on these experimental 

individuals. Regarding RFI calculation, it has been proposed to decrease by one week the length of feed 

intake recording, with no impact on the RFI calculation. Moreover, no significant impact of wool traits 

neither of body composition traits has been found on feed efficiency traits, which makes the more 

parsimonious model requiring only feed intakes and body weights to be recorded. 

From the first results, it appears that ruminal variables (microbiota, metabolomics) cannot be 

proposed as proxies for feed intake neither for feed efficiency when they are considered separately. 

However, data collected at the level of the host (plasmatic metabolites such as citrate or some amino 

acids and 15N natural abundancies) are more likely to be proposed as potential proxies of feed 

efficiency or feed intake. The combination of gas emissions and classical recorded traits (ADG and BW) 

were found to well predict has high or low feed intake.  

Feed intake is predicted with higher accuracies than feed efficiency traits. 

First multi-omic integration analyses in Romane meat divergent lines highlighted that the best proxies 

for residual feed intake were fixed effets (and covariate) and plasma NMR.   

Genetic analyses and particularly the estimation of genetic correlation between the proposed proxies 

and feed intake or feed efficiency traits, will provide additional information to better propose valuable 

proxies to be more largely recorded. 

In commercial farms, the clustering of ewes and lambs based mainly on body weights and body 

condition scores did not highlight any significant link between the status of the ewes and the 

performances (early body weights and growth) of their lambs. 
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8 Communications related to feed efficiency and its proxies 

Results presented in this report have been communicated in international conferences: 

2020 

Esteban C, Toral PG, Fernández-Díez C, Suarez-Vega A,  Gutiérrez-Gil B, González Recio O, Hervás G, 
Marina H, Frutos P and Arranz J-J (2020) Study of rumen microbiota in dairy sheep with different feed 
efficiency using nanopore sequencing. Book of Abstracts of the 71st Annual Meeting of the European 
Federation of Animal Science.) Virtual Meeting 1-4 December 2020. 
 
De Barbieri I, Navajas EA, Giorello D, Velazco JI, Banchero G, Rodríguez B, Rovira F and Ciappesoni G 
(2020) Association between feed efficiency and methane emissions, performance and health in Merino 
sheep. Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science.) 
Virtual Meeting 1-4 December 2020. 
 
Della Badia A, Hervás G, Toral PG, Amor J, Belenguer A, Fernández-Díez C and Frutos P (2020) The 
paradox of using residual feed intake or conversion ratios to study feed efficiency in dairy ewe. Book 
of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science.) Virtual 
Meeting 1-4 December 2020. 
 
Franco M, Toral PG, Esteban C, Gutiérrez-Gil B, Hervás G, Arranz J-J, Frutos P and Suárez-Vega A. (2020) 
Milk transcriptome analysis identifies genes and pathways affecting feed efficiency in dairy ewes. Book 
of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science.) Virtual 
Meeting 1-4 December 2020. 
 
Touitou F, Marie-Etancelin C, Weisbecker J-L, Marcon D, François D, Bessa R, Meynadier A and 
Tortereau F. (2020). Divergent selection on residual feed intake in Romane meat sheep breed to dissect 
biological processes underlying feed efficiency. Book of Abstracts of the 71st Annual Meeting of the 
European Federation of Animal Science.) Virtual Meeting 1-4 December 2020. 
 
Weisbecker J-L, Huau C, BompaJ-F, Marcon D, Estivalet L, Marie-Etancelin C, Tortereau F, 
Heirman T, Laperruque F, Francois D and Ricard E. (2020). High-throughput phenotyping of intakes in 
small ruminants. Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal 
Science.) Virtual Meeting 1-4 December 2020. 
 
 
2021 

Marques, C.B.; Ciappesoni, G; Velazco, J.I.; Navajas, E.A.; Ferreira, G.F.; Ramos, Z.; Rovira, F.; De Barb-
ieri, I. (2021) Evaluation of different models to define a more suitable Residual Feed Intake estimation 
in Merino sheep. Book of Abstracts of the 72nd Annual Meeting of the European Federation of Animal 
Science. 
 
Le Graverand Q, Tortereau F, Meynadier A, Marcon D and Marie-Etancelin C, (2021) The rumen micro-
biota is modified in lambs divergently selected for residual feed intake. Book of Abstracts of the 72nd 
Annual Meeting of the European Federation of Animal Science. 
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Marie-Etancelin C, Weisbecker J-L, Marcon D and Tortereau F (2021): Impact of RFI selection on lambs’ 
feeding behaviour. Book of Abstracts of the 72nd Annual Meeting of the European Federation of Ani-
mal Science. 
 
Tortereau F, Marie-Etancelin C, Frutos P, Conington J, Arsenos G, De Barbieri I, Jakobsen JH, Moreno-
Romieux C, Arranz J-J. (2021) SMARTER – Which novel traits to improve feed efficiency? Proceedings 
of the 44th ICAR Annual Conference virtually held from Leeuwarden, NL, 26-30 April 2021 
 

Touitou F, Meynadier A, Marty-Gasset N, Vialaneix N, Lefort G and Tortereau F. (2021). Plasmatic and 

ruminal metabolomes of lambs divergently selected on residual feed intake. Book of Abstracts of the 

72nd Annual Meeting of the European Federation of Animal Science. 

 

2022 

Chassier M., Mosnier F., Rupp R., Bluet B., Bailly-Salins A. and Palhière I. 2022. Genetic parameters of 

feed efficiency in dairy goats, under commercial conditions. In Proceedings of 12th World Congress on 

Genetics Applied to Livestock Production (WCGALP), pp. 296–299. Wageningen Academic Publishers. 

Jakobsen J.H., Blichfeldt T., Linneflaatten L.-B., Gløersen M.O., Wallin L.E.  and McEwan J.C. 2022. 

Methane emission has low genetic correlations to lamb growth traits in Norwegian White sheep. In 

Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP), pp. 183–

186. Wageningen Academic Publishers. 

Le Graverand Q., Marie-Etancelin C., Weisbecker J.L., Meynadier A., Marcon D. and Tortereau F. 2022. 

Using machine learning to predict feed intakes of meat sheep from animal traits and ruminal 

microbiota. In Proceedings of 12th World Congress on Genetics Applied to Livestock Production 

(WCGALP), pp. 618–621. Wageningen Academic Publishers. 

Machefert C., Robert-Granié C., Lagriffoul G., Astruc J.M., Parisot S., Allain C., Portes D., Hassoun P.  

and Larroque H. 2022. Validation and genetic analysis of a feed efficiency criterion in French Lacaune 

ewes. In Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP), 

pp. 288–291. Wageningen Academic Publishers. 

Marina H., G. Hervás, R. Pelayo, P.G. Toral, A. Suárez-Vega, B. Gutiérrez-Gil, C. Esteban Blanco, P. 

Frutos, J.J. Arranz. 2022. Using milk fatty acids as biomarkers to improve feed conversion ratio in dairy 

sheep. In Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP): 

pp. 2956-2959. Wageningen Academic Publishers. 

Marques, C.B, De Barbieri, I., Velazco, J., Navajas, E.A. and Ciappesoni, G. 2022.  Genetic parameters 

for feed efficiency, gas emissions, oxygen consumption and wool traits in Australian Merino. In 

Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP), pp. 160–

163. Wageningen Academic Publishers. 

Suárez-Vega A., B. Gutiérrez-Gil, G. Hervás, H. Marina, R. Pelayo, P.G. Toral, C. Esteban-Blanco, P. 

Frutos, J.J. Arranz. 2022. Milk transcriptome analysis to elucidate the impact of prepubertal nutrition 

in dairy ewes residual feed intake. In Proceedings of 12th World Congress on Genetics Applied to 

Livestock Production (WCGALP): pp. 2909-2912. Wageningen Academic Publishers. 

Vouraki S., Papanikolopoulou V., Siachos N., Fotiadou V., Arsenos G. 2022. Association of milk 

composition traits as indicators of feed efficiency in Chios dairy ewes. In Book of Abstracts of the 73rd 
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11 Appendix 

11.1 Appendix 1 – Detailed traits description, laboratory protocols and bioinformatics 

pipelines 

Partner Analysis Protocol 

UNILEON Basisc 
statistics of 
analytical 
groups 

The following table shows the basic statistics of the animals selected for the 
intensive sampling population. The table shows the average, standard deviation (SD), 
standard error of the mean (SEM), maximum (Max), and minimum (Min) EBV values in each 
of the groups considered. The distribution of control (C) and nutritional challenge (NC) 
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animals are equal in the two groups (high vs. low) of estimated breeding values (EBV) for 
milk production. 

Group N Average SD SEM Max Min 

High_EBV 20 86.45 15.19 3.40 109.5 60.5 

Low_EBV 20 37.38 15.45 3.46 57.5 5.5 

C 20 58.66 31.68 7.08 109.5 5.5 

NC 20 62.63 27.07 6.05 109.5 9.0 
 

UNILEON Feed 
composition 

Feed samples were prepared (ISO 6498:2012) and analyzed for DM (ISO 
6496:1999), ash (ISO 5984:2002), and CP (ISO 5983-2:2009). The NDF, ADF and ADL 
concentrations were sequentially determined using an Ankom2000 fiber analyzer (Ankom 
Technology Methods 13, 12, and 8, respectively; Ankom Technology Corp., Macedon, NY, 
USA); the former was assayed with sodium sulfite and α-amylase, and both NDF and ADF 
were expressed with residual ash. Starch content was analyzed by a total starch assay kit 
obtained from Megazyme (K-TSTA; Megazyme Intl. Ireland Ltd., Wicklow, Ireland). The 
FAME of lipid in freeze-dried TMR samples were prepared in a 1-step extraction-
transesterification procedure (Shingfield et al., 2003), adding 1 mg of cis-12 13:1 (10-1301-
9, Larodan Fine Chemicals AB, Solna, Sweden) as an internal standard. The methyl esters 
were separated and quantified using a gas chromatograph (Agilent 7890A GC System, Santa 
Clara, CA, USA) equipped with a flame ionization detector and a 100-m fused silica capillary 
column (0.25 mm i.d., 0.2-μm film thickness; CP-SIL 88, CP7489, Varian Ibérica S.A., Madrid, 
Spain), and hydrogen as fuel and carrier gas (207 kPa, 2.1 mL/min). Total FAME profile in a 
2-μL sample volume at a split ratio of 1:50 was determined using a temperature gradient 
program described in Shingfield et al. (2003). Peaks were identified based on retention time 
comparisons with commercially available standards (from Nu-Chek Prep, Elysian, MN, USA; 
and Sigma-Aldrich, Madrid, Spain). 

UNILEON Milk sampling Following the protocol by Suárez-Vega et al. (2015), the collection was performed 
approximately 1 h after milking and 10 min after the injection of oxytocin (5 IU/ewe; 
Facilpart, Laboratorios SYVA, León, Spain) to maximize the concentration of mammary 
epithelial cells. Udders were cleaned with water and soap and then disinfected with 
povidone-iodine; nipples were also washed with RNaseZap (Ambion, Austin, TX, USA). 
Individual samples were obtained by hand-milking each half of the mammary gland into an 
RNase-free 50-mL tube (2 samples/ewe) that was covered with sterile gauze to filter the 
milk. Samples were kept in ice and immediately transferred to the laboratory for RNA 
extraction.  

UNILEON Milk 
composition 

Fat, protein, and lactose concentration were determined by infrared 
spectrophotometry (ISO 9622:1999) using a MilkoScan FT6000 (Foss, Hillerød, Denmark). 
Lipid in 1 mL of milk was extracted and converted to FAME by base-catalyzed 
transesterification (Shingfield et al., 2003). Total FAME profile was determined using the 
same chromatograph and temperature gradient program applied for the analysis of feed, 
but isomers of 18:1 were further resolved in a separate analysis under isothermal 
conditions at 170°C (Shingfield et al., 2003). All peaks were identified based on retention 
time comparisons with commercially available standards (from Larodan Fine Chemicals AB, 
Nu-Chek Prep, and Sigma-Aldrich), cross-referencing with chromatograms reported in the 
literature (e.g., Shingfield et al., 2003), and comparison with reference samples for which 
the FA composition was determined based on GC analysis of FAME and GC-MS analysis of 
corresponding 4,4-dimethyloxazoline derivatives (Bichi et al., 2013; Toral et al., 2017). 
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UNILEON Milk DNA and 
RNA 
extractions 

Milk samples were kept on ice and immediately transferred to the laboratory to 
obtain the milk somatic cell pellet through washing and centrifugation procedure with PBS 
solution. Then, cell pellets were diluted in 0.5 ml of RNAlater (Ambion, Austin, TX, USA) and 
stored at -80ºC till RNA-extraction. RNA extraction was performed following a standard 
Trizol protocol as detailed by Suarez-Vega et al. (2016). In addition, milk samples were also 
collected for DNA extraction on week 8 of the lactation to assess epigenetic marks by 
whole-genome bisulfite sequencing (WGBS). The extraction protocol was an adapted 
version of MasterPure™ DNA Purification Kit for Blood Version II (Lucigen, USA), described 
by Murphy et al. (2002). After extraction, DNA samples were kept at 4ºC, whereas RNA 
samples were stored at −80ºC.  

UNILEON Rumen fluid 
management 

Immediately after collection, the ruminal fluid was filtered with a 400 µm nylon mesh 
(Fisher Scientific S.L., Madrid, Spain). Then, 4 mL of each sample were acidified with 4 mL 
of 0.2 M HCl for ammonia analysis and further 4 and 0.8 mL aliquots were taken, 
respectively, for the analysis of lactic acid and VFA (the latter deproteinized with 0.5 mL of 
0.5 M HCl solution containing 0.25 M metaphosphoric acid and 6.9 mM crotonic acid). 
These samples were stored at −30°C until analysis. The remaining fluid sample was 
immediately frozen at −80°C, freeze-dried, and stored again at −80°C until analyzed for FA 
composition. 

UNILEON Rumen fluid 
composition 

Ammonia and lactic acid concentrations were determined by colorimetric methods 
(Reardon et al., 1966; Taylor, 1996; respectively) and VFA by GC, using crotonic acid as an 
internal standard (Ottenstein and Bartley, 1971), in centrifuged samples. 

Lipid in 200 mg of freeze-dried rumen liquor was extracted twice using 4 mL 
hexane:isopropanol (3:2, v/v, pH 2; Shingfield et al., 2003), and adding cis-12 13:1 as an 
internal standard. Organic extracts were combined and dried at 45°C with a continuous 
flow of nitrogen, and FA were converted to methyl esters using a sequential base-acid 
catalyzed transesterification (Toral et al., 2017). Then, the FA profile was determined using 
the same procedures applied for the analysis of milk. 

UNILEON Gene expres-
sion profile by 
RNA-Seq.  

The RNA integrity (RIN value) was measured for all the milk RNA samples using an 
Agilent 2100 Bioanalyzer device (Agilent Technologies). Due to budget limitations, of the 
40 ewes involved in the feed efficiency experiment, a total of 28 animals were selected for 
transcriptome analysis. The selection criteria were to choose 14 animals from each point 
of the RFI distribution (high and low efficiency, based on its RFI). We ensure a balanced 
representation of animals from the C and NC groups and high and low EBV in each of the 
two combinations of higher and lower efficiency animals. The cDNA library construction 
and sequencing were conducted at NOVOGENE in Cambridge (UK).  The construction of the 
cDNA library takes place using the UltraTM RNA Library Prep Kit (NEBNext®). With that, 28 
stranded paired-end libraries were prepared. According to the manufacturer's instructions, 
cDNA libraries were sequenced to a minimum depth of 30 million paired-end reads on a 
Novaseq 6000 (Illumina), generating stranded paired-end reads of 150 bp.  

 
Differential expression analysis 

The main steps in RNAseq analysis are (i) Quality Control using FASTQC and Trimmomatic 
to remove those sequences that presented low quality or inadequate length and cut out 
those sequences that have errors as residues of the adapters used in sequencing. (ii) 
Alignment against the reference genome (Oar_rambouillet_v1.0) using STAR v2.4.0 
software (Dobin et al., 2013) and quantifications of transcripts for the different samples 
using RSEM software (v.1.3.0) (Li and Dewey, 2011) using the annotation from Ensembl 
database. 
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Once tables with the quantified reads for each gene and sample had been obtained, the 
differential expression analysis was performed. This type of analysis aims to identify those 
genes that are significantly differentially expressed (DEGs) between the groups or 
conditions analyzed, particularly between the High-RFI versus the Low-RFI.  

Power analysis 

The Estimation of statistical power in RNA-seq was performed using the R package ssizeRNA (Bi and 
Liu, 2016), taking into account the dispersion and analysis parameters used in our experiment. 
Briefly, during the simulation procedure, we contemplated a genome of 20,000 genes with an ex-
pected proportion of DEG of 10% and FDR of 0.05. The sample size in cases and controls was 14 in 
each group. With these data, we obtained an average power of 0.656 considering that not all genes 
share the same fold change; in our case, we considered that fold-change comes from a log-normal 
distribution (log − Normal(log(2), 0.5 ∗ log(2)). The following figure plots the average power for dif-
ferent sample sizes. With the same parameters but fixing the fold-change in ≥ 2, the statistical power 
reaches 0.76 for a sample size of 14 (data not shown). 

 
 
 

 

Functional enrichment analysis (GO term enrichment analysis) 

Once DEGs had been identified between the two conditions studied, subsequent analyses 
were proposed to identify biological functions and metabolic pathways significantly 
enriched between the over-expressed or under-expressed genes in the animals with high 
and low feed efficiency using ToppGene software (Cincinnati Children's Hospital Medical 
Center, 2020). The final objective of this analysis is to know if the biological and functional 
information linked to the DEGs identified between the two experimental groups allows us 
to explain the difference in RFI between both conditions, determining the biological 
processes and metabolic pathways enriched in the set of DEGs.  

Finally, a network analysis was carried out to identify those genes whose proteins 
presented protein-protein correlations both direct (physical interactions) and indirect 
(functional interactions) with the STRING program (Szklarczyk et al., 2018). Once the 
protein-protein interactions network has been built, the STRING tool allows different types 
of functional enrichment analysis to be carried out against various databases, allowing the 
identification of gene ontology (GO) terms, metabolic pathways (KEGG), and Reactome 
Pathway (Kanehisa and Goto, 2000; Slenter et al., 2018). 
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Variant calling and annotation 

After the alignment, Samtools (Li et al, 2009) was used to convert sam files to bam 
files and then to sort and merge the bam files from the same animal at different time-
points. Then, Picard (Wysoker et al, 2010) was used to add read groups and mark duplicated 
reads on the merged bam files. SNP and Indel calling was performed using the BCFtools 
software (Li, 2011). To obtain high-quality variants, strict filter conditions were applied 
using SnpSift (Cingolani et al, 2012) (Variation Quality (QUAL) >30, Mapping Quality (MQ) 
>40, Quality By Depth. (QD) >5, Fisher Strand (FS) <60 and a minimum Depth of coverage 
(DP) >5 in all the samples). SnpEff (Cingolani et al, 2012) were used to predict the functional 
consequences of the detected variants. 

Weighted Gene Coexpression Network Analysis (WGCNA) 
The Weighted Gene Co-expression Network Analysis (WGCNA) (Langfelder and 

Horvath (2008) R package was used to build co-expression networks and identify groups of 
highly co-expressed genes. Individual analyses were conducted on each breed group (High 
and Low RFI, and C and NC animals). First, the low count genes and outliers were filtered 
by leaving only genes with at least 1 count per million in 90% of each group. The gene 
expression counts were normalized using the default procedure from the DESeq2 package 
by correcting for effect not analyzed (C, vs NC or HEBV vs. LEBV) to reduce potential effects 
from the given factor. The final dataset expression values were subjected to the WGCNA 
using the WGCNA Bioconductor package in R (Langfelder et al., 2008). Pairwise Pearson’s 
correlations among all genes were calculated to create a similarity matrix. The similarity 
matrix was used to calculate the Topological Overlap Matrix (TOM). Modules of co-ex-
pressed genes were identified by using the dynamic tree cut algorithm. The modules were 
constructed with a minimum module size of 30 genes. The module eigengenes were com-
puted for each module using the first principal component to capture the variation in gene 
expression within each module. The eigengene sign was chosen to have a positive correla-
tion with average module gene expression. The correlation between module eigengene 
and RFI or treatment diet was evaluated to select modules associated with the respective 
traits (p-value < 0.05). In addition, FDR were computed using Benjamini–Hochberg (BH). To 
interpret the functional and biological significance of the co-expressed gene network mod-
ules significantly associated to RFI and diet, ToppGene software (Cincinnati Children's Hos-
pital Medical Center, 2020) was used to identify significantly enriched GO terms and KEGG 
metabolic pathways  
 

UNILEON Epigenetic 
marks (DNA-
methylation) 
by WGBS 
(Whole-
genome 
bisulfite 
sequencing) 

The animals chosen to analyze epigenetic marks were the same 28 selected in the 
case of the RNA-seq experiment detailed above. The quality and concentration of DNA 
samples obtained from milk somatic cells were assessed with a Qubit 2.0 fluorometer. Li-
brary construction and sequencing were conducted at NOVOGENE in Cambridge (UK). The 
library construction involved DNA fragmentation, methylation of cytosines, and bisulfite 
treatment. Sequencing was performed for different libraries according to the concentra-
tion and the demand of data amount on a Novaseq 6000 (Illumina) sequencer generating 
paired-end reads of 150 pb with a minimum depth of 30 million paired-end reads per sam-
ple.  

Identification of differentially methylated regions (DMRs) and genes related to 
DMRs 

A preliminary version of the bioinformatic workflow analysis for detecting differen-
tially methylated regions (DMRs) between the groups to be compared (NC vs C; HighEBV vs 
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LowEBV) has been recently presented by Suárez-Vega et al. (2021). Quality control assess-
ments were performed using FASTQC and Trimmomatic . High-quality sequences were 
mapped to the ovine reference genome (Oar_rambouillet_v1.0) using BISMARK (Krueger 
& Andrews 2011). Then, the same software was used to deduplicate mapping files and per-
form the methylation calling using deduplicate_bismark and bismark_methylation_extrac-
tor packages, respectively (Krueger & Andrews 2011). DMRs were determined using the R 
package DSS (dispersion shrinkage for sequencing data) (Feng et al. 2014). We identified 
DMRs using the coverage files from BISMARK and the calldmr function from DSS package 
with a smoothing window of 200 bp, p-value threshold of 1e-05, and a percentage of CG 
sites with significant p-values in the DMR greater than 0.5. To be considered significant, a 
DMR was required to contain at least three CpG sites (default parameter). Once identified, 
genes and QTLs within the DMRs were annotated using GALLO package in R (Fonseca et al., 
2020). Finally, functional enrichment analyses was performed in the genes related to DMRs 
to identify and interpret the biological processes involved in the groups compared based 
on GO terms and KEGG pathways using ToppGene software (Cincinnati Children's Hospital 
Medical Center, 2020).  
 

UNILEON Metabolomic 
analyses 

Sample processing 
A 50 mL milk sample was collected from each of the 39 ewes for untargeted metabolomics 
on the last day of the trial. Each sample was aliquoted into 200 µL portions and stored at -
80 °C. Each aliquot was mixed with 1 mL of methanol-chloroform (3:1) in an Eppendorf 
tube. The mixture was vortexed at 3000 rpm for 1 min and then sonicated in an ice-water 
bath for 2 mins. Following this, centrifugal precipitation was performed at 21,000 g and 5 
°C for 10 minutes. The resulting transparent supernatant was collected for further 
processing. 
Reversed-phase liquid chromatography-mass spectrometry (LC-MS) 
Reversed-phase LC‒MS was performed to detect features ranging from polar to less polar 
compounds and lipids. For each sample, 200 µL of the supernatant was transferred to an 
LC injection vial. The column flow rate was set to 400 μL/min, and the column temperature 
was maintained at 55 °C. Each sample underwent two rounds of sample solution injections, 
one for positive ion detection and another for negative ion detection. For compound 
detection and relative quantitation, the MS instrument was operated in the Fourier 
transform MS detection mode at a mass resolution of 60,000 FWHM @ m/z (mass-to-
charge ratio) 400 and within a mass range of m/z 50 to 1800. To ensure the quality of LC‒
MS detection during data acquisition, a quality control (QC) sample was prepared by 
pooling samples from 10 randomly selected test samples. The QC sample was injected in 
parallel with the test samples in completely random order during data acquisition. 
Hydrophilic interaction LC‒MS (HILIC-MS) 
HILIC-MS was performed to detect highly polar features. For each sample, 600 µL of the 
supernatant was mixed with 150 µL of water and 200 µL of chloroform. Subsequently, 5 µL 
aliquots from each sample solution were injected into a Waters HILIC column. The high-
resolution LC‒MS analysis was conducted using the same equipment and a similar 
procedure as described above. In this case, the column flow rate was set to 300 μL/min, 
and the column temperature was maintained at 40 °C. The mass detection range for this 
analysis was m/z 50 to 1000. 
Data processing 
Four high-resolution LC‒MS datasets were obtained, and each dataset was processed using 
the R package XCMS (Smith et al., 2006). The processing steps included peak detection, 
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peak grouping, peak alignments, and retention time shift correction. The resulting dataset 
included pairs of MS m/z and LC retention time (RT, min) for the detected compound 
features across all the samples within each dataset. This procedure revealed 3760 feature 
signals. Those for which less than 75% of the data were available from the ewes were 
filtered out, resulting in a final dataset composed of 3749 features. As untargeted 
metabolomics data are compositional in nature (Sisk-Hackworth and Kelley, 2020), the 
feature signals were normalized using a centered log-ratio (CLR) transformation. The 
processed data were implemented in subsequent statistical analyses. 
Analysis of the discrimination between high and low FE groups and selection of features 
with better discriminating profiles 
The ewes were classified into high, medium, and low FE groups for RFI (H-RFI, M-RFI, L-RFI) 
and FCR (H-FCR, M-FCR, L-FCR) based on the distribution of each metric. The R package 
mixOmics (Rohart et al., 2017) was used to perform a partial least squares discriminant 
analysis (PLS-DA) to evaluate the potential of selected features to discriminate the high, 
medium, and low FE groups for both RFI and FCR. The area under the curve (AUC) was 
calculated to estimate the discrimination potential of PLS-DA among the three FE groups. 
The first two principal components were plotted with centroids to define the groups 
identified by the PLS-DA using the plotIndiv function in the mixOmics package. Additionally, 
the performance of PLS-DA for the RFI and FCR groups was evaluated based on the mean 
error rate and Q2 for the first five principal components through cross-validation u lines 
180-27sing 10 folds. Once the ewes were assigned to each group, the variable importance 
in the projection (VIP) was estimated to compute the influence on the features of every 
predictor in the PLS-DA model. Features with a VIP>2 were selected individually from the 
outputs of the discriminant analysis for RFI and FCR. 
Prediction of RFI and FCR using machine learning algorithms 
Predictive models were built using the CLR-transformed values for each of all 3749 
detected features (RFI_all and FCR_all) and for the subsets of features selected in the PLS-
DA analysis for RFI and FCR with VIP>2 (RFI_VIP and FCR_VIP). The ML models were built 
based on a multilayer feedforward artificial neural network (deep) and random forest (RF) 
using the R package h2o (Candel, Arno, Viraj Parmar, Erin LeDell, 2016), extreme gradient 
boosting (xgboost) using the R package xgboost (Chen and Guestrin, 2016), and support 
vector machine (SVM) using the caret R package (Kuhn, 2008).  
 

INRAE Dairy 
performances 

The recording of milk yield and milk content was carried out by applying the standard AC 
milk-recording design. At each test-day, morning milk yield was measured, and protein 
content (PC), fat content (FC), somatic cell count and urea were quantified on a sample of 
this milking. The milk yield of the day was estimated by corrected the morning milk yield 
for the evening and morning differences using the ratio between the total volumes of milk 
produced by the whole flock at two milkings. 

INRAE Metabolomic 
analyses 
(plasma and 
rumen fluid) 

Plasma samples were centrifuged at 3,000 g for 5 min at 4°C then 200 µL of the supernatant 
was transferred to a microtube containing 500 µL of phosphate buffer (pH= 7.0) with 17.2 
mg/mL of Trimethylsilylpropanoic acid (TSP) used as a reference for chemical shift and 
centrifuged for 15 min at 4,190g and 4°C. Finally 600 µL of the supernatant were 
transferred to NMR tubes.  
As previously explained for plasma samples, rumen fluid samples were centrifuged, 
transferred to a microtube containing phosphate buffer and TSP except that instead of one 
centrifugation for 15 minutes at 4,190g and 4°C, the supernatant was transferred to 
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another microtube and centrifuged again in the same conditions before 600 µL of the 
supernatant being transferred to NMR tubes. 
Samples were kept at 300K while spectra were acquired using the cpmgpr1D Bruker pulse 
program on a Bruker AVANCE III HD 600 MHz NMR spectrometer (Bruker Biospin, 
Rheinstetten, Germany) operating at 600.13 MHz for 1H resonance frequency using an 
inverse detection 5 mm 1H-13C-15N-31P cryoprobe attached to a cryoplatform (the 
preamplifier cooling unit) with the following parameters : 512 transient and 16 “dummy” 
scans using a relaxation time of 2.0s and an acquisition time of 1.36s resulting in the 
acquisition of 32k data points.  
Spectra issued from the analysis were aligned using the TSP peak (or glucose peaks when 
TSP had been complexed with residual proteins). Pre-processing of the spectra (zero order 
phase correction, shift referencing on TSP in rumen spectra and on D-Glucose doublet at 
5.24ppm when proteins were complexed with TSP making it unavailable for referencing, 
baseline correction) was performed using the TopSpin® software.  
Pre-processed spectra were imported in ASICS (version 2.5.3) package from R software 
which was used to normalize areas under the spectra to constant sum before removing the 
solvent (water) signals i.e between 4.5 to 5.1 ppm. Parameters were the following: 
noise.thres was set to 0.015 in plasma samples and 0.075 in rumen samples in accordance 
with noise baseline observed in spectra, max.shift was set to 0.01 in all spectra and 
clean.thres was set to 50 to keep only the metabolites that were present in at least 50% of 
the samples in each matrix*diet. 

INRAE microbiota 
sequencing 

Microbial DNA was extracted and 16sRNA was amplified using V4-V5 probes. With this pair 
of probes, not only bacteria but also archea‘s DNA was amplified. The 18sRNA was also 
amplified, to study protozoa and fungi. A second amplification was performed to fix tags 
on the first amplified sequences, and tagged PCR products were loaded on the Illumina 
MiSeq cartridge (Illumina, San Diego, CA, USA) at the Get-PlaGe platform of INRAE 
(Toulouse, France). Raw reads were treated with FROGS pipeline (Escudié et al., 2018) and 
finally, OTUs were affiliated with the Silva database (version 138) (Quast et al., 2013) 

INRAE Long-chain 
fatty acids 

Rumen fluid was processed as described in (Alves et al., 2013). Briefly, rumen samples were 
freeze-dried and then transesterified into fatty acid methyl esters (see details in (Jenkins, 
2010)). These fatty acids methyl esters were identified by electron impact and chemical 
ionization mass spectrometry.Spectra were not analysed yet. 

INRAE Volatile fatty 
acids 

Rumen fluid is centrifuged for 20 minutes at 2,880g and 4°C, and 1mL of supernatant is 
transferred into a microtube containing 200mL of metaphosphoric acid (concentration?). 
This microtube is centrifuged for 15 minutes at 20,000g and 4°C and 100 µL of supernatant 
is transferred to a microtube containing  75 µL of methylvaleric acid  and 900 µL of ultra-
pure water. This final mix is analysed through gas chromatography coupled with a flame 
ionization detector. 

INRAE NIRS on 
faecal 
samples 

faecal samples were dried at 60°C during 72 hours, grounded at 1mm, placed in a 50 mm 
diameter ring cup and scanned in reflectance mode at 2 nm intervals from 400 to 2,500 nm 
using a Foss NIRSystems model 6,500 scanning VIS/NIR spectrometer (Foss NIRSystems, 
Silver Spring, MD, USA). Spectra were recorded with the ISIcan version 2.21 software 
(Infrasoft International, State College, PA, USA). Spectral data treatment was performed 
using WinISI II version 1.60 (Infrasoft International,Port Matilda, PA, USA). The standard 
normal variate and detrend (SNVD) scatter correction procedures were applied to the raw 
data (Barnes et al., 1989). Spectra were then transformed using a mathematical first-order 
gap derivation. 
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INRAE Natural 15N 
abundances 

Natural 15N abundances (δ15N) in plasma and feed samples from lambs fed concentrate or 
diets rich in forage were analyzed using an isotope-ratio mass spectrometer (Isoprime 
Vision; Elementar France) coupled to an elemental analyser (Vario cube; Elementar 
France). Analysis were performed at INRAE 
(https://www6.clermont.inrae.fr/plateforme_exploration_metabolisme). For plasma 
preparation, 10µL were pipetted into a small tin capsule, evaporated at room temperature 
for 24h and then the capsule closed before being loaded in the analyzer. Each plasma 
sample was analyzed in triplicate. For dried and ground feed, between 4 and 6 mg were 
weighted (relative to their N content) and also analyzed in triplicate. In-house standards 
(glutamic acid) were included in each run every 10 samples to correct for possible time-
variations in the analysis. Results were expressed using the delta notation (δ15N). 

 

 

11.2 Appendix 2 – feeding systems in the French dairy farms involved in the data 

collection 

The figure below shows examples of feeding strategies encountered on the farms. On a wet forage 

feed, the proportion of concentrates is higher (13% on average). In the figure, the share of 

concentrates is distributed collectively in the sheepfold but also individually at the automatic 

concentrate feeder in the milking parlour. Concentrates represent ~20% of the total feed.  These 

strategies are in link with the requirements of PDO cheeses described above. Grazing is present in all 

SMARTER farms and can start at the beginning or in the middle of lactation. In the Pyrenean farms, 

dehydrated feed is used more often. 
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                    c) 

Figure: Average share of feed (dry, wet or dehydrated forages, grazing and concentrates) in the 

collective feed (in % of the distribution of each feed category in the total ration) at each milk test-day 

(MTD). Figure 6a:   an example of a feed based on wet fodder (silage, silage wrap) distributed to the 

Lacaune breed, figure 6b: example of a feed based on dry fodder distributed to the Lacaune breed. 

Figure 6c: example of a feed distributed in the Western Pyrenean area.  

 

11.3 Appendix 3 - Feed efficiency values in Assaf animals of the UNILEON-CSIC 

experiment.  

Residual Feed Intake (RFI), Residual Energy intake (REI), and Feed Conversion Ratio (ECR) indexes. EBV 

indicates the Estimated Breeding Value for milk yield. 

Animal Nutritional 
Challenge* 

RFI REI FCR 

1 C -0.25 -1.72 1.09 

2 C -0.20 -1.39 1.25 

3 C 0.04 0.25 1.92 

4 NC 0.08 0.52 1.11 

5 C 0.15 1.01 1.36 

6 C 0.02 0.15 1.27 

7 C 0.14 0.95 1.42 

8 NC 0.22 1.49 1.57 

9 C 0.00 -0.02 1.67 

10 NC 0.05 0.34 1.64 

11 C -0.01 -0.05 1.57 

12 C 0.00 -0.03 1.38 

13 C -0.10 -0.69 1.30 

14 C 0.01 0.08 1.53 

15 NC 0.02 0.12 1.46 
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16 NC 0.07 0.46 1.24 

17 NC 0.14 0.95 1.43 

18 NC 0.00 0.02 1.87 

19 NC -0.14 -0.93 1.56 

20 NC 0.19 1.33 1.33 

21 C -0.14 -0.97 1.42 

22 NC 0.12 0.84 1.18 

23 C 0.06 0.44 1.53 

24 NC 0.11 0.77 1.68 

25 NC 0.05 0.35 1.18 

26 NC -0.02 -0.16 1.11 

27 C -0.04 -0.27 0.99 

28 C -0.34 -2.35 1.13 

29 C 0.03 0.19 1.20 

30 C -0.09 -0.65 1.52 

31 C 0.17 1.14 1.12 

32 NC -0.13 -0.87 1.20 

33 NC 0.07 0.50 1.52 

34 NC -0.09 -0.59 1.23 

35 NC -0.18 -1.21 1.02 

36 NC 0.28 1.90 1.32 

37 C -0.07 -0.50 1.24 

38 NC -0.16 -1.08 1.10 

39 NC -0.04 -0.27 1.30 

40 C NA NA 0.88 

*C: Control; NC: Nutritional Challenge. NA Data non-available. 

 

11.4 Appendix 4 -  Phenotypes for Residual Feed Intake (RFI), and Feed Conversion Ratio 

(FCR) for the ewes using in RNA-Sequencing work. 

Sample_id Group animal RFI FCR 

R_MFE_C6h CONTROL 61522 -0.04 0.99 

R_MFE_D6h NC 61536 -0.18 1.02 

R_MFE_C1h CONTROL 61472 -0.25 1.09 

R_MFE_D3h NC 61521 -0.02 1.11 

R_MFE_C7l CONTROL 61528 0.17 1.12 

R_MFE_D6l NC 61520 0.05 1.18 

R_MFE_D3l NC 61509 0.12 1.18 

R_MFE_D4h NC 61530 -0.13 1.2 

R_MFE_C7h CONTROL 61526 0.03 1.2 
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R_MFE_D5h NC 61534 -0.09 1.23 

R_MFE_C5l CONTROL 61540 -0.07 1.24 

R_MFE_D7h NC 61501 0.07 1.24 

R_MFE_C2h CONTROL 61473 -0.2 1.25 

R_MFE_C4h CONTROL  61483 0.02 1.27 

R_MFE_C5h CONTROL 61493 -0.1 1.3 

R_MFE_D7l NC 61539 0.28 1.32 

R_MFE_C3h CONTROL  61480 0.15 1.36 

R_MFE_C3l CONTROL 61490 0 1.38 

R_MFE_C1l CONTROL  61484 0.14 1.42 

R_MFE_D2l NC 61502 0.14 1.43 

R_MFE_D1l NC 61499 0.02 1.46 

R_MFE_C4l CONTROL 61498 0.01 1.53 

R_MFE_D5l NC 61504 -0.14 1.56 

R_MFE_C2l CONTROL 61489 -0.01 1.57 

R_MFE_D1h NC 61488 0.05 1.64 

R_MFE_C6l CONTROL 61486 0 1.67 

R_MFE_D2h NC 61518 0.11 1.68 

R_MFE_D4l NC 61503 0 1.87 

 

 

11.5 Appendix 5 – Test of approximation of variables contributing to the definition of 

feed efficiency  

The first step consisted in validating the approximations using data from a precise individual food 

monitoring (weighing) carried out at the experimental unit of INRAE: Domaine de La Fage, in the 

framework of the European iSAGE project. Thus, it was possible to test different hypotheses of 

"simplification" allowing to measure the sensitivity and robustness of calculation method of feed 

efficiency retained for SMARTER farms. 

Within the framework of the iSAGE project, 48 Lacaune ewes were individually monitored for their 

dairy performances, weights, body conditions (BCS) and feed intakes (weighing of forages and 

concentrates distributed and refused in individual troughs). All these measurements were performed 

individually, weighing of feed quantities and refusals were performed daily over a period of 70 days, 

and milk performance and BCS were recorded once a week over a period of 4 months during their 2nd 

(in 2018) and 3rd lactation (in 2019). 
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A first calculation of feed efficiency was made from the individual measured data (reference value).  In 

order to mimic the SMARTER protocol, data simplifications were performed by taking a single common 

value for all ewes for the following variables: BW, BCS, forage intake and standardized milk production.  

For each simplified variable, the single common value set for all ewes was first the average value of 

the group, then a gradient below and above (e.g. the average live weight of the group is 78.5 kg in 

2019, the values set are 70, 75, 78.5, 80 and 85 kg for all ewes). The variables are simplified one by 

one, and then the simplifications are aggregated over several variables at once. The reclassification of 

the ewes after simplification of the variables had allow to define the importance of each one in the 

calculation of feed efficiency. 

 

 

11.6 Appendix 6 – description of feed efficiency (through NEICMR) in French dairy 

sheep breeds 

Lactation stage 1 corresponds to the month of lamb suckling, which explains the low number of animals 

in this category. The lactation stages ranged from month 2 to 8. The range of feed efficiency values is 

from 0.5 to 1.75 for all breeds.  

Estimated feed efficiency results (mean, standard deviation, minimum, maximum and coefficient of 

variation) by ewe's milk production area, parity and milk recording number 

Milk production Area Parity 

Lactation 

stage 

(month) N Mean Sd Minimum Maximum CV 

Roquefort area primiparous 1 22 0.87288 0.23262 0.55209 1.45904 27 

Roquefort area primiparous 2 388 0.86321 0.17223 0.50160 1.34726 20 

Roquefort area primiparous 3 470 0.87959 0.23446 0.50010 1.69423 27 

Roquefort area primiparous 4 548 0.89464 0.23324 0.50536 1.69304 26 

Roquefort area primiparous 5 632 0.94445 0.2543 0.50028 1.74556 27 

Roquefort area primiparous 6 468 0.83005 0.24357 0.50160 1.67324 29 

Roquefort area primiparous 7 401 0.79336 0.18943 0.50033 1.73400 24 

Roquefort area primiparous 8 178 0.76354 0.23624 0.50222 1.50810 31 

Roquefort area multiparous 1 19 0.99048 0.32268 0.53380 1.70809 33 

Roquefort area multiparous 2 949 0.96944 0.22346 0.51398 1.72555 23 

Roquefort area multiparous 3 1422 0.95913 0.22826 0.50032 1.74386 24 
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Sd : standard deviation ; CV : coefficient of variation 

 

11.7 Appendix 7 : beta-hydroxybutyrate phenotyping with portable blood sugar/ketone 

meter 

 

  

Roquefort area multiparous 4 1529 0.94413 0.23235 0.50294 1.70529 25 

Roquefort area multiparous 5 1531 0.98717 0.28738 0.50048 1.74635 29 

Roquefort area multiparous 6 1464 0.86318 0.22042 0.50004 1.72674 26 

Roquefort area multiparous 7 922 0.77983 0.20272 0.50053 1.70222 26 

Roquefort area multiparous 8 627 0.74945 0.19179 0.50103 1.53188 26 

Western Pyrenean area primiparous 1 45 0.66523 0.12746 0.50783 1.06462 19 

Western Pyrenean area primiparous 2 170 0.75691 0.19341 0.50826 1.53593 26 

Western Pyrenean area primiparous 3 230 0.80652 0.22623 0.50104 1.72183 28 

Western Pyrenean area primiparous 4 292 0.78035 0.1906 0.50416 1.71918 24 

Western Pyrenean area primiparous 5 170 0.81603 0.23231 0.50365 1.57239 28 

Western Pyrenean area primiparous 6 149 0.89847 0.29713 0.50120 1.74245 33 

Western Pyrenean area primiparous 7 194 0.84088 0.25411 0.50171 1.69808 30 

Western Pyrenean area primiparous 8 74 0.89582 0.2682 0.51394 1.69685 30 

Western Pyrenean area multiparous 1 21 0.78562 0.25666 0.51713 1.36742 33 

Western Pyrenean area multiparous 2 168 0.83414 0.2049 0.50432 1.54072 25 

Western Pyrenean area multiparous 3 156 0.80343 0.20277 0.50259 1.60854 25 

Western Pyrenean area multiparous 4 159 0.73515 0.19821 0.50140 1.60109 27 

Western Pyrenean area multiparous 5 110 0.83881 0.27162 0.50443 1.67493 32 

Western Pyrenean area multiparous 6 122 0.87875 0.27911 0.50269 1.58738 32 

Western Pyrenean area multiparous 7 131 0.81849 0.26316 0.50014 1.67960 32 

Western Pyrenean area multiparous 8 75 0.78909 0.23886 0.50027 1.73049 30 
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Protocole de dosage du BHB sanguin à l’aide du lecteur 
Freestyle Abbot 

  
Le dosage de β-hydroxybutyrate (BHB) se place dans le cadre général d’approches innovantes pour 

l’élevage durable des petits ruminants, permettant de concilier l’efficience d’utilisation des ressources 
alimentaires et la résilience des individus en termes de santé, de bien-être et de longévité productive 
(projet européen SMARTER ; https://www.smarterproject.eu/). 

 Le BHB est un corps cétonique, dont la mesure permet un suivi individuel ou de troupeau des 
changements de l’équilibre énergétique de l’animal (Sadjadian et al., Comp Clin Path, 2012). 

Il s’agira d’évaluer l’intérêt de ce marqueur (BHB) pour diagnostiquer des troubles métaboliques 
et/ou prédire d’autre troubles de santé en relation avec le bien-être des animaux. Nous chercherons 
également à caractériser la variabilité inter individuelle de la cétonémie (BHB) et l’influence de certains 
facteurs d’élevage (système alimentaire) dans les phases cataboliques (mobilisation des réserves) et 
anaboliques (reconstitution des réserves). L’étude permettra également d’étudier l’association entre 
ce marqueur du métabolisme énergétique et des caractères de production (poids, production laitière) 
et de reproduction (réussite à l’insémination animale).  

 
 
Le mode opératoire proposé repose sur un dispositif de mesure direct sur du sang total réalisable 

à la ferme à l’aide du lecteur Freestyle Optium Neo H de Abbot et de languettes dédiées au dosage 

du BHB (électrodes Freestyle Optium H -ketone). 
 
 
Préambule : la calibration de l’appareil est à réaliser en amont des mesures, à chaque nouvelle 
ouverture d’une boite d’électrodes.  

 

 

 

  

Lecteur Abbott 

Freestyle Optium NeoH 
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1  
  
 

 
1 - Collecter du sang total par prise de sang 

- Sur tube sec, si la mesure est réalisée dans les minutes 
qui suivent la prise de sang 

- Sur tube EDTA, si la mesure est réalisée jusqu’à 2 
heures après la prise de sang  

Le dosage ne requiert que 1-2 ml de sang (maximum) 
Le tube de sang EDTA peut-être réutilisé pour l’extraction 
d’ADN le cas échéant  
 

2 

 
 

 
 

 
 

 
2 - Dosage  
 

2.1 - Sortir une électrode (Freestyle Optium H -ketone) de 
son emballage individuel violet 
 
2.2 - Insérer l’électrode dans le lecteur (Freestyle Optium Neo 
H), coté stries noires, jusqu’à la butée. 
 

2.3 - Le lecteur s’allume automatiquement et le symbole  
clignote 
  
2.4 - Ouvrir le tube de sang, après l’avoir retourné 2-3 fois 
pour homogénéiser le contenu, et tremper la zone de dépôt 
blanche de l’électrode dans le tube. Une alternative est de 
verser une goutte de sang sur la zone de dépôt de la lan-
guette  
 
2.5 - Trois traits s’affichent et disparaissent lorsque suffisam-
ment de sang est déposé   
 
2.5 - Un temps d’attente de 10 secondes s’affiche avant de 
donner le résultat. Celui-ci est généralement compris entre 
0.2 et 1.2 mmol/L 
 
2.6 - Enlever l’électrode et recommencer à l’étape 2.1 pour 
l’échantillon de sang suivant 
 

 
 
 
Avertissement : le lecteur n’est pas opérant s’il fait trop froid.  
Si un code erreur s’affiche à l’écran :  
i) Enlever et réinsérer l’électrode si le sang n’est pas déjà déposé  
ii) changer l’électrode si le sang est déjà déposé. 
 


