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About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

 SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges.  

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency.  
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1 Summary 

This deliverable presents two manuscripts that compile the results of part of the work done in WP1. 

These results help to understand the genetic basis of the trait resource use efficiency in small 

ruminants. The study of this trait is the main objective of WP1.  

The first manuscript [INIA-UY] analyses different ways of estimating Residual feed intake, which is the 

main indicator of animal feed efficiency. This study shows different models to estimate RFI in Autralian 

Merino sheep with meat/wool aptitude. The main result of this experiment indicates that a reduction 

in the duration of the experimental period from 42 to 35 days of measurement does not yield a 

reduction in the reliability of the estimates. This aspect is very important since it allows the 

optimisation of testing station facilities and the evaluation of a more significant number of animals, 

increasing the predictive capacity of the breeding scheme and reducing its costs.  

In the second study, RNAseq-type methodology is used in somatic cells from the milk of high and low-

feed-efficiency dairy ewes [UNILEON]. This method allows the sampling of animals without biopsies 

and to analyse of the gene expression profile of the milk somatic cells, which are an excellent proxy for 

the secretory cells of the mammary epithelium. These animals were compared through differential 

expression analysis (DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA). In the DEA, 

79 genes were identified as differentially expressed between both conditions, while the sPLS-DA 

identified 261 predictive genes [variable importance in projection (VIP) > 2]. The DEA allowed the 

identification of genes associated with the immune system and stress in Low-FE animals. In addition, 

the sPLS-DA approach revealed the importance of genes involved in cell division and cellular lipid 

metabolic process for the High-FE sheep in the lactating mammary gland transcriptome. A set of 

discriminant genes, commonly identified by the two statistical approaches, was also detected, 

including some involved in cell proliferation or encoding heat-shock proteins. 

 

2 Introduction 

There are several reasons why studying the genetic basis of feed efficiency in small ruminants is 

important. One reason is that feed efficiency is a key factor in the profitability of a farm. Small 

ruminants that are more efficient at converting feed into product (meat, wool and milk) are more 

profitable for the farmer and make the production system have a lower environmental impact when 

evaluating the emission of greenhouse gases per kilogram of product. This can lead to cost savings for 

the farmer and improved sustainability for the livestock sector as a whole.  

Another reason is that feed efficiency is an important trait for the health and welfare of small 

ruminants. For example, dairy animals that are less efficient at converting feed into milk are more likely 

to suffer from health problems such as obesity, which can negatively impact their overall health and 

wellbeing. Another reason why feed efficiency is important in small ruminants is because these animals 

are often raised in environments where feed is scarce or of poor quality. For example, sheep and goats 

are often raised on marginal lands or in arid regions with limited access to high-quality feed. In these 

environments, feed efficiency can be a key factor in the survival and productivity of the animals. By 

understanding the genetic basis of feed efficiency, we can develop breeding programs that aim to 

improve the health and welfare of small ruminants. Finally, studying the genetic basis of feed efficiency 

can also help us to understand the underlying biological mechanisms that contribute to this trait. This 
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knowledge can be used to develop new technologies and approaches that can help farmers to improve 

the feed efficiency of their animals. Overall, the study of the genetic basis of feed efficiency in small 

ruminants is important for improving the profitability and sustainability of the livestock sector and 

promoting animal health and welfare. 

One of the objectives of WP1 of the SMARTER project is the knowledge of the genetic basis of the trait 

"Feed efficiency" in small ruminants. For this purpose, tools of classical quantitative genetics have been 

used, and it has been possible to determine the genetic parameters of the main indicators of feed 

efficiency. As presented in deliverable 1.2, FE traits have moderate heritability and variable genetic 

correlations with the different production traits. In any scenario analysed, there is a clear consensus 

that the feed efficiency trait can be used in the different breeding programs for meat/wool and dairy 

animals. In any case, it must be taken into account that, to estimate feed efficiency, it is necessary to 

precisely analyse feed intake, animal weight, and the quantity and quality of the product. This makes 

it complicated to implement this character in small ruminant breeding programs. For this reason, 

alternatives have been investigated throughout the project to simplify feed efficiency estimation 

processes without losing precision. Therefore, the first chapter of this deliverable refers to an 

experiment, the results of which have been published in the journal Livestock Science (Amarilho-

Silveira et al., 2022) and which proposes a one-week reduction in the classical estimation procedures 

and which would allow the analysis of 20% more animals in the same evaluation period.  

On the other hand, the SMARTER project also proposes using approaches with genomic tools to 

analyse the genetic architecture of feed efficiency, such as genome-wide association analysis (GWAS). 

For this purpose, SNP genotyping in the different commercial populations of sheep and goats 

measured for feed efficiency is undergoing. The project also proposes using certain molecular markers 

analysed in task 1.1 derived from the analysis of the transcriptome or epigenome of the somatic cells 

of the milk to unravel the biological basis of feed efficiency.  

In the second chapter of this deliverable, the results of the GWAS analyses are not yet available and 

therefore, the results of the study conducted in the experimental population of Assaf breed where 

feed efficiency was measured, and RNAseq analysed mammary transcriptome expression are 

presented. This study (Suarez Vega et al., under review) is currently under review in the Journal of 

Dairy Science and is expected to be accepted for publication in the coming weeks. 
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3 Manuscript 1: Residual feed intake for Australian Merino sheep 

estimated in less than 42 days of trial (Amarilho-Silveira., 2022) 

This manuscript is published in open access at the link at the end of the reference. 

Amarilho-Silveira, F., de Barbieri, I., Cobuci, J. A., Balconi, C. M., de Ferreira, G. F., & Ciappesoni, G. 

(2022). Residual feed intake for Australian Merino sheep estimated in less than 42 days of trial. 

Livestock Science, 258, 104889. https://doi.org/10.1016/J.LIVSCI.2022.104889  

 

 

https://doi.org/10.1016/J.LIVSCI.2022.104889
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4 Manuscript 2: Feed efficiency in dairy sheep: An insight from the 1 

milk transcriptome (Suárez Vega et al., under review) 2 

 3 

Suarez-Vega, A., Frutos, P., Gutiérrez-Gil, B., Esteban-Blanco, C., Toral P.G., Arranz, J.J., Hervás, 4 

G. Feed efficiency in dairy sheep: An insight from the milk transcriptome. Journal of Dairy  5 

Science (under review). 6 
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Interpretative Summary 24 

Feed efficiency in dairy sheep: An insight from the milk transcriptome. By Suárez-25 

Vega et al. The knowledge of the genetic architecture behind feed efficiency would allow 26 

the breeding of more efficient animals maximizing farm profitability and reducing the 27 

environmental impact of animal production. This study analyzes high throughput gene 28 

expression data from milk samples to determine key genes and biological mechanisms 29 

associated with feeding efficiency in dairy sheep. This research demonstrates the 30 

informative potential of the milk transcriptome as a target tissue to determine the 31 

biological basis of feed efficiency in dairy sheep, highlighting the importance of genes 32 

involved in cell division and lipid metabolism in the lactating mammary gland of high-33 

feed efficiency sheep.  34 

ABSTRACT 35 

As higher feed efficiency in dairy ruminants means a higher capability to transform feed 36 

nutrients into milk or milk components, differences in feed efficiency are expected to be 37 

partly linked to changes in the physiology of the mammary glands. Therefore, this study 38 

aimed to determine the biological functions and key regulatory genes associated with feed 39 

efficiency in dairy sheep using the milk somatic cell transcriptome. RNA-Seq data from 40 

high (H-FE, n = 8) and low (L-FE, n = 8) feed efficiency ewes were compared through 41 

differential expression analysis (DEA) and sparse Partial Least Square-Discriminant 42 

analysis (sPLS-DA). In the DEA, 79 genes were identified as differentially expressed 43 

between both conditions, while the sPLS-DA identified 261 predictive genes [variable 44 

importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep. The DEA 45 

between sheep with divergent feed efficiency allowed the identification of genes 46 

associated with the immune system and stress in L-FE animals. In addition, the sPLS-DA 47 

approach revealed the importance of genes involved in cell division (e.g., KIF4A and 48 

PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, GPAM, and ACOX3) for the 49 

H-FE sheep in the lactating mammary gland transcriptome. A set of discriminant genes, 50 

commonly identified by the two statistical approaches, was also detected, including some 51 

involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock 52 

proteins (CRYAB or HSPB1). These results provide novel insights into the biological basis 53 

of feed efficiency in dairy sheep, highlighting the informative potential of the mammary 54 
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gland transcriptome as a target tissue and revealing the usefulness of combining 55 

univariate and multivariate analysis approaches to elucidate the molecular mechanisms 56 

controlling complex traits. 57 

Keywords: dairy sheep, feed efficiency, mammary gland, RNA-Seq, sPLS-DA 58 

INTRODUCTION 59 

Feed costs represent a high proportion of total costs associated with the livestock industry 60 

(up to 65–70%; Zhang et al., 2017). Breeding more efficient animals would maximize 61 

farm profitability and also reduce the environmental impact of animal production 62 

(Lovendahll et al., 2018). However, the challenges and costs of estimating feed efficiency 63 

make the implementation of this phenotype in animal breeding schemes difficult. 64 

Therefore, elucidating the complex genetic architecture behind feed efficiency is one of 65 

the major research goals in this field. 66 

RNA sequencing is widely used in animal breeding to determine genes influencing 67 

complex traits, such as milk production, reproductive performance, and quality of 68 

carcasses (Wickramasinghe et al., 2014). For feed efficiency, most studies using RNA-69 

Seq data have been performed in pigs, chicken, and beef cattle (e.g., Chen et al., 2021; 70 

Piles et al., 2019; Xiao et al., 2021). In dairy ruminants, we have only found the following 71 

studies comparing divergent feed efficiency cows using liver and white blood cell 72 

transcriptomes: (Khansefid et al., 2017; Salleh et al., 2017, 2018; Dorji et al., 2021)). 73 

However, we are not aware of any RNA-Seq approach linking the lactating mammary 74 

gland transcriptome and feed efficiency. In dairy sheep, hardly any transcriptomic studies 75 

have been conducted to characterize feed efficiency. To our knowledge, the only research 76 

aiming at identifying differentially expressed genes in sheep with extreme residual feed 77 

intake (RFI) values was published by Zhang et al. (2019) using liver samples.  78 

As higher feed efficiency means a higher capability of the animal to transform feed 79 

nutrients into milk or milk components, we hypothesize that high and low feed efficiency 80 

sheep would show transcriptomic differences in the mammary cells. Therefore, this study 81 

aims to characterize the transcriptome of the mammary gland in lactating sheep with 82 

divergent feed efficiency values by identifying genes, metabolic pathways, and biological 83 

processes potentially involved in this phenotype. At a practical level, concerning the 84 

interest in the dairy sheep industry, our objective is to obtain feed efficiency-related data 85 
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at the molecular level that can be used in the future in commercial population selection 86 

programs. 87 

MATERIAL AND METHODS 88 

Ethics statements 89 

All experimental procedures were approved by the Research Ethics Committee of the 90 

Instituto de Ganadería de Montaña, the Spanish National Research Council (CSIC), and 91 

the Junta de Castilla y León (Spain), following procedures described in Spanish and 92 

European Union legislation (R. D. 53/2013 and Council Directive 2010/63/EU). 93 

Animals and sampling 94 

This study constitutes a part of a larger research project aiming at providing new insights 95 

into the physiological mechanisms contributing to feed efficiency variation in dairy 96 

ruminants. A detailed description of the sheep management practices and calculations for 97 

the feed efficiency index (FEI) are detailed in Toral et al. (2021).  98 

For these analyses, we selected animals with divergent FEI values from a group of 40 99 

lactating Assaf ewes. Briefly, FEI was computed as the difference between the recorded 100 

(DMIR) and the predicted (DMIP) dry matter intake over a three-week experimental 101 

period. 102 

𝐹𝐸𝐼 = 𝐷𝑀𝐼𝑅 − 𝐷𝑀𝐼𝑃 103 

DMIP was calculated as follows: 104 

𝐷𝑀𝐼𝑃 = 𝑀𝐸𝑚𝑝/𝑀𝐸𝑇𝑀𝑅 105 

Where MEmp are the metabolizable energy requirements for maintenance, production, 106 

and BW change (MJ/d), and METMR is the metabolizable energy of the total mixed ration 107 

(TMR; MJ/kg of DM). Both values were estimated using equations for metabolizable 108 

energy requirements for nonpregnant lactating sheep and TMR formulation and tables of 109 

the nutritional value of feed materials from the Agricultural and Food Research Council 110 

(AFRC, 1993).  111 

Sheep with extreme FEI values (8 high feed efficiency sheep (H-FE), FEI = −0.29 (SD = 112 

0.23), RFI = −0.16 (SD = 0.25), and 8 low feed efficiency sheep (L-FE), FEI = 0.81 (SD 113 

= 0.24), RFI = 0.19 (SD = 0.24)) were sampled for RNA-Seq. Milk samples were obtained 114 
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as described previously (Toral et al., 2016). To summarize, 50 mL of fresh milk was 115 

collected from each animal one hour after milking and 10 min after injection of 5 IU of 116 

oxytocin/animal (Facilpart, Laboratorios SYVA, León, Spain) to maximize milk somatic 117 

cell concentration. To prevent RNA degradation, udders were cleaned with soap and 118 

water and disinfected with povidone-iodine, and the nipples were also flushed with 119 

RNAseZap (Ambion, Austin, TX, USA). A sterile gauze was used to cover the collection 120 

tube to avoid contamination. 121 

For RNA extraction, the milk somatic cells (MSC) were pelleted by centrifugation at 122 

650×g for 10 min at 4 °C in the presence of a final concentration of 0.5 mM of EDTA. 123 

Then, the pellet was washed twice with 10, and 2 mL of PBS (pH 7.2 and 0.5 mM of 124 

EDTA) followed by centrifugation at 650×g for 10 min at 4 °C. 125 

The last pellet was kept in RNAlater (Sigma-Aldrich, Madrid, Spain) and stored at −80 126 

ºC until RNA extraction using 500 μL of TRIzol according to the manufacturer’s 127 

instructions (Invitrogen, Carlsbad, CA, USA). The RNA quality was evaluated using an 128 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), obtaining a 129 

mean RNA integrity number of 8.2 (SD = 0.6). The RNA sequencing was conducted at 130 

CNAG (Centro Nacional de Análisis Genómico, Barcelona, Spain), where the TrueSeq 131 

Stranded Total RNA Library Prep Kit (Illumina, San Diego, CA, USA) was used for 132 

library preparation. A HiSeq™ 3000/4000 sequencing system (Illumina) was used to 133 

generate stranded paired-end reads of 75 bp. The datasets generated for this study can be 134 

found in the ArrayExpress - EMBL-EBI database under the accession E-MTAB-12355. 135 

Alignment and quantification 136 

The alignment to the ovine reference genome (assembly ARS-UI_Ramb_v2.0) available 137 

at NCBI was performed using STAR v. 2.7.0 (Dobin et al., 2013). The quantification of 138 

the gene expression for the different samples was carried out using RSEM v.1.3.3 139 

software (Li and Dewey, 2011). The options applied for the quantification were “–paired-140 

end” to indicate our data were paired-end, “–estimate-rspd” to estimate the start position 141 

of the distribution, “–calc-ci” to calculate 95% credibility intervals and posterior mean 142 

estimates, “–seed 12345” to set the seed for the random number of generators used in 143 

calculating posterior mean estimates and credibility intervals, and “–p 8” to fix the 144 

parallel environment. 145 
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Differential expression analysis 146 

To perform the differential expression analysis (DEA), we first imported the samples into 147 

the R environment with the Tximport package (Soneson et al., 2016). Once the matrix of 148 

counts per gene and sample was created, we kept genes with more than 10 counts in at 149 

least three samples. Then, technical replicates from the same sample were collapsed using 150 

the “collapseReplicates” function on DESeq2 (Love et al., 2014). The DEA between L-151 

FE and H-FE animals was performed using DESeq2 (Love et al., 2014). We selected 152 

differentially expressed genes with a False Discovery Rate (FDR) <0.05, and 153 

log2FoldChange> |1.5|.  154 

Sparse Partial Least Square-Discriminant analysis  155 

The matrix of counts, normalized with DESeq2, was used to perform a sparse Partial 156 

Least Square-Discriminant analysis (sPLS-DA) in order to identify the key genes driving 157 

discrimination of our samples into H-FE and L-FE classes. To perform the sPLS-DA we 158 

used the R package mixOmics (Rohart et al., 2017). We used the function “tune.splsda” 159 

to assess the optimal number of components and variables to select in each component. 160 

For this step, the function “tune” implements repeated (N = 15) and stratified (10-fold) 161 

the cross-validation to obtain the best predictive performance for the model. Then, the 162 

function “splsda” was used to classify the samples and select the variables. The function 163 

“vip” allowed us to obtain the variable importance in projection (VIP) coefficients, which 164 

reflect the relative importance of variables to explain each component. Genes with a VIP 165 

higher than two were selected for further analysis. 166 

Functional enrichment analyses 167 

Gene ontology (GO) terms and pathways were analyzed to explore the biological 168 

relevance of genes associated with feed efficiency in the DEA and sPLS-DA analyses. 169 

For the functional enrichment analyses, we used the ToppGene Suite (Chen et al., 2009). 170 

GO terms and pathways were selected as functionally enriched when the q-value 171 

(Benjamini and Hochberg correction) was < 0.05, and at least two genes were clustered 172 

in the term. To visualize the results, the GOplot R package was used (Walter et al., 2015). 173 

RESULTS 174 

Mapping statistics summary 175 
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An average of 31.4 million reads per library (n = 16) was generated. Overall, 96.65% of 176 

the reads aligned to the ovine genome; among them, 78.61% were uniquely mapped reads. 177 

A total of 15,116 genes were expressed (i.e., those detected in at least 3 samples and with 178 

10 counts or more).  179 

Differentially expressed genes between H-FE and L-FE sheep and functional 180 

enrichment analyses 181 

In the DEA, 79 genes were identified as differentially expressed (DEG) between H-FE 182 

and L-FE animals (FDR < 0.05 and log2FoldChange > |1.5|; Table S1; 183 

doi:10.17632/3mw4hnpvr6.1), 10 genes had higher expression in the lactating mammary 184 

gland of H-FE animals, and 69 had higher expression in the L-FE.).  185 

Functional enrichment analysis was performed to determine which GO terms were 186 

enriched among the DEGs. We found enriched (FDR < 0.05) 27 GO terms in the 187 

biological process category (BP)-GO terms and two pathways (Source = MSigDB C2 188 

BIOCARTA (v7.5.1)) (Table S2; doi:10.17632/3mw4hnpvr6.1). There was non-189 

enrichment in the molecular function (MF) and cellular component (CC) categories. A 190 

total of 11 BP-GO terms remained after reducing the terms with a gene overlap greater 191 

than 80% (Figure 1). The highest enriched BP-GO terms were “response to lipid” (16 192 

genes; FDR = 1.637E-2), “regulation of protein modification process” (16 genes; FDR = 193 

3.134E-2), and “positive regulation of DNA-templated transcription” (16 genes; FDR = 194 

3.134E-2). All 11 BP-GO terms had a negative z-score, meaning they were 195 

downregulated in the H-FE animals, but the BP-GO term “mitotic spindle midzone 196 

assembly” had a positive z-score (1.41) and was enriched with two genes (KIF4A and 197 

PRC1) (FDR = 4.976E-2). The pathways found enriched were “Overview of 198 

proinflammatory and profibrotic mediators” (5 genes; FDR = 2.991E-2) and “p53 199 

transcriptional gene network” (4 genes; FDR = 2.991E-2). 200 

Discriminant genes between H-FE and L-FE 201 

The supervised analysis with the sPLS-DA method was applied to discriminate between 202 

H-FE and L-FE animals (Figure 2A). The tune function led to an sPLS-DA model with 203 

one component and 380 predictive genes that could help to classify sheep as H-FE and 204 

L-FE; 261 out of those 380 genes had a VIP > 2 (Table S3; doi:10.17632/3mw4hnpvr6.1). 205 

The prediction obtained with the first component was AUC (area under the curve) = 1 (P-206 
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value = 0.0007775), with a significantly balanced error rate of 0.32. The 20 genes with 207 

the highest loading are represented in Figure 2B. The loading weights were positive for 208 

the H-FE group and negative for the L-FE group. Interestingly, among the set of 209 

discriminant genes in the sPLS-DA (VIP > 2), 18 genes were also detected with the 210 

DEGs: CCNA2, CRYAB, GALNT17, HS3ST1, HSPB1, IQCF1, KIF20A, KIF4A, 211 

LOC101111669, LOC101115355, LOC101117955, MYO7A, NKX3-1, PDE4C, PRC1, 212 

PRDM5, SESN2, and TOP2A (Table 1). 213 

The functional enrichment analysis was performed with the discriminant genes between 214 

high and L-FE sheep with a VIP > 2. We identified 40 GO terms enriched in the BP 215 

category, five GO terms in the MF category, and 14 terms enriched in the CC category 216 

(Table S4; doi:10.17632/3mw4hnpvr6.1). The highest enriched terms in each GO 217 

category were “nuclear division” for the BP (26 genes, FDR = 1.154E-6), “ATP binding” 218 

for the MF (34 genes, FDR = 1.575E-2), and “chromosome, centromeric region” for the 219 

CC (15 genes, FDR = 7.342E-5). With the enrichment analysis using the pathway 220 

databases, 21 pathways were found to be significantly enriched (Table S4; 221 

doi:10.17632/3mw4hnpvr6.1), the highest enriched one “Cell Cycle, Mitotic” (22 genes, 222 

FDR = 1.454E-4, BioSystems: REACTOME). In Figure 2C, GO terms (2, 7, and 4 GO 223 

terms from the MF, BP, and CC categories) and pathways (2 pathways from the 224 

REACTOME database) remaining after eliminating those with a gene overlap greater 225 

than 80% are represented. All non-redundant terms and pathways had a positive z-score, 226 

meaning that, in general, the genes clustered in each term/pathway had higher expression 227 

in the H-FE condition. 228 

DISCUSSION 229 

The characterization of the genetic basis of economically relevant breeding traits is 230 

crucial to understanding the biology underlying these phenotypes and selecting animals 231 

with higher genetic merit. Regarding feed efficiency, RNA-Seq has been applied over the 232 

last decade to determine genes and markers related to this trait in several livestock species 233 

mainly intended for meat production (e.g., Ramayo-Caldas et al., 2018; Higgins et al., 234 

2019; Zhang et al., 2019; Xiao et al., 2021). Nevertheless, less research has been 235 

performed in dairy cattle (Khansefid et al., 2017; Salleh et al., 2017, 2018), and we are 236 

not aware of studies on dairy sheep. The liver has been the most commonly used organ 237 

to study gene expression differences in relation to feed efficiency (Khansefid et al., 2017; 238 
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Salleh et al., 2017, 2018). However, the collection of biopsies from an internal organ 239 

would not be feasible in practice. In this study, we analyzed RNA-Seq data from milk, 240 

which offers a novel perspective for the genetic characterization of feed efficiency. The 241 

milk transcriptome has successfully been used to examine differences in mammary 242 

metabolism due to breed (Suárez-Vega et al., 2016; Michailidou et al., 2021), lactation 243 

stage (Wickramasinghe et al., 2012; Suárez-Vega et al., 2015; Arora et al., 2019), dietary 244 

lipid supplementation (Suárez-Vega et al., 2017, 2019), and mastitis (Asselstine et al., 245 

2019).  246 

We used two bioinformatic approaches, DEA and sPLS-DA. DEA independently tests 247 

the expression level of each gene between conditions allowing the determination of the 248 

DEGs. Our study identified 79 DEGs between high- and L-FE sheep. A similar number 249 

of DEG was identified by other authors when the liver was used as the target tissue (55 250 

DEGs when studying FE for daily gain and body weight in Hu sheep (Zhang et al., 2019a) 251 

(FDR < 0.05 and log2FoldChange > |1.5|) and 70 and 19 DEGs (FDR < 0.05) for Holstein 252 

and Jersey dairy cattle breeds, respectively (Salleh et al., 2017)). Most of the genes found 253 

to be differentially expressed had a higher expression in the L-FE condition. Thus, most 254 

GO terms found enriched were related to the biological processes upregulated in the L-255 

FE sheep. The highest enriched term among the DEGs was “response to lipid”, suggesting 256 

that dietary lipids can induce a different response in more or less efficient animals. Several 257 

studies in nutrigenomics in ruminants have demonstrated that lipid supplementation 258 

affects the lactating mammary gland transcriptome (Mach et al., 2011; Suárez-Vega et 259 

al., 2017, 2019). Moreover, it has been shown that there is variability in the individual 260 

response to dietary unsaturated fatty acids (Frutos et al., 2017). Although L-FE and H-FE 261 

ewes received the same TMR, a detailed fatty acid analysis of their ruminal digesta 262 

suggested a lower biohydrogenation extent of dietary fatty acids in the less efficient group 263 

(Toral et al., 2021), which might contribute to explain the present findings.  264 

In addition, it is worth mentioning that almost all the genes in the GO term “lipid 265 

response” are clustered between the terms “response to cytokine” and “response to 266 

oxidative stress”. Metabolic adaptations to high energy demands, such as lactation, lead 267 

to lipid mobilization, which might be higher in less efficient sheep. This would be 268 

supported by their lower BW gain over the trial and the lower milk de novo fatty acids/cis-269 

9 18:1 ratio, a potential proxy of energy deficiency and body fat mobilization (Toral et 270 
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al., 2021). Lipid mobilization has been demonstrated to favor inflammatory responses 271 

and oxidative stress (Contreras and Sordillo, 2011). In addition, several RNA-Seq studies 272 

with different target tissues and species, such as beef (Lindholm-Perry et al., 2017; de 273 

Lima et al., 2020), dairy cows (Salleh et al., 2017), pigs (Ramayo-Caldas et al., 2018; 274 

Horodyska et al., 2019), sheep (Zhang et al., 2019a), and poultry (Yang et al., 2020) 275 

support our results and highlight the association between feed efficiency and the immune 276 

system and stress, indicating that the latter processes may increase maintenance 277 

requirements and so reduce production in L-FE animals (Patience et al., 2015).  278 

Regarding upregulated genes in H-FE sheep, we found the enriched term “mitotic spindle 279 

midzone assembly”, which is associated with anaphase and cell division (Wadsworth, 280 

2021). The vast majority of cell proliferation in the mammary gland occurs during its 281 

allometric growth before puberty and during pregnancy, with the number of secretory 282 

cells in the mature udder correlating with milk yield (Tucker, 1987). It has been 283 

demonstrated in dairy cattle and mice that there is a constant but low proportion of cell 284 

division during lactation (Knight, 2000; Sorensen et al., 2006). The genes involved in 285 

“mitotic spindle midzone assembly”, KIF4A and PRC1, showed low abundance in our 286 

transcriptomic data (< 10 fragments per kilobase per million mapped reads (FPKM)), 287 

which agrees with the results reported in cattle postulating that cell division during 288 

lactation is low. However, the higher expression of these two genes in H-FE animals 289 

suggests that cell division might also be higher than in L-FE, consistent with the observed 290 

differences in milk yield between groups (Toral et al., 2021).  291 

Systems biology is particularly interesting when determining the genetic basis of complex 292 

phenotypes, such as feed efficiency. Co-expression network analysis has been 293 

successfully used to analyze the genetic architecture of feed efficiency by finding 294 

modules of highly co-expressed genes (Alexandre et al., 2015; Ramayo-Caldas et al., 295 

2018; Salleh et al., 2018; de Lima et al., 2020). However, to date, no studies have 296 

exploited sPLS-DA to study transcriptomics behind feed efficiency. The sPLS-DA 297 

approach aims to determine the most discriminant set of genes between the sample groups 298 

(Rohart et al., 2017). As a multivariate methodology, modeling transcripts as a set, sPLS-299 

DA provides a more accurate picture of the context of the biological system and 300 

complements the findings obtained from univariate approaches. In our analysis, the 301 

number of discriminant genes between H-FE and L-FE sheep was higher than the number 302 
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of genes detected by the DEA approach (261 vs 79 genes, respectively). These results 303 

allowed us to determine which biological processes were more relevant for the H-FE 304 

condition (Figure 2), complementing the results obtained by the DEA approach in which 305 

most enriched GO terms were associated with L-FE. The most enriched MF was “ATP 306 

binding”. Some studies in livestock species have related energy homeostasis production 307 

with feed efficiency (Alexandre et al., 2015; Ramayo-Caldas et al., 2018; Salleh et al., 308 

2018; Yang et al., 2020). However, mutations in the ATP-binding domain have also been 309 

demonstrated to affect anaphase chromosome segregation in cultured cells (Wagenbach 310 

and Maney, 1999). Thereunder, the majority of the terms enriched were linked to “nuclear 311 

division”, “chromosome organization”, and “cell division”, among others, with more than 312 

20 genes clustered within these terms. This result highlights the importance of the 313 

findings previously discussed from the DEA analysis, suggesting a greater cell division 314 

in the lactating udder of H-FE sheep. Thus, we hypothesize that the higher milk yield of 315 

more efficient animals (Toral et al., 2021) could be due to a higher number of secretory 316 

cells. Moreover, the sPLS-DA methodology allowed the identification of a higher number 317 

of genes linked to cell division than DEA. This reinforces the use of a systems biology 318 

approach to understanding the complexity of the biological processes behind feed 319 

efficiency, which may be underestimated using univariate analyses (Brito et al., 2020).  320 

Another GO term enriched and associated with H-FE was “cellular lipid metabolic 321 

process”, consistent with the greater milk fat yield in more efficient animals (Toral et al., 322 

2021). Some well-known genes involved in mammary lipid metabolism were found as 323 

discriminant genes between H-FE and L-FE sheep: LPL, SCD, GPAM, and ACOX3. The 324 

LPL gene product, the lipoprotein lipase, is involved in the mammary uptake of plasma 325 

fatty acids (Bionaz and Loor, 2008; McManaman, 2009) and, in cattle, an association 326 

between LPL abundance and maintenance of milk synthesis through lactation has been 327 

suggested (Bionaz and Loor, 2008). Regarding the stearoyl-CoA desaturase (SCD), an 328 

enzyme implicated in the desaturation of fatty acids, polymorphisms in the SCD gene 329 

have been associated with milk and protein yields in dairy cattle (Macciotta et al., 2008; 330 

Alim et al., 2012). Another gene associated with lipid metabolisms was GPAM, which 331 

encodes for mitochondrial glycerol-3-phosphate acetyltransferase, a protein involved in 332 

triglyceride synthesis (Roy et al., 2006). In dairy cows, mutations in the GPAM gene were 333 

significantly correlated with changes in milk fat and protein or milk yield (Yu et al., 334 

2021). The most discriminant gene between H-FE and L-FE sheep was ACOX3. This 335 
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gene encodes for acyl-Coenzyme A Oxidase 3, which is involved in peroxisomal β-336 

oxidation. The majority of cellular energy is supplied by the oxidation of carbohydrates, 337 

fats, or protein. Although ACOX3 was upregulated in the H-FE group, in general, genes 338 

involved in fatty acid oxidation have been related to low feed efficiency in livestock 339 

(Alexandre et al., 2015; Tizioto et al., 2015; Zhang et al., 2019b) and negative energy 340 

balance (Swartz et al., 2021), when using the liver as target tissue. However, oxidation in 341 

mammary tissue has received less attention, and its relationship with feed efficiency is 342 

thus less clear. In any event, genome-wide association studies in dairy cows suggested 343 

associations between ACOX3 and fat percentage and some fatty acid concentrations in 344 

dairy cows (Ibeagha-Awemu et al., 2016; Bahithige et al., 2021).  345 

Finally, we conducted a literature review on those genes found in common by the two 346 

methodological approaches (DEA and sPLS-DA) to corroborate the association with feed 347 

efficiency. Some genes, such as CRYAB, HSPB1, or PRC1 have been related to feed 348 

efficiency in livestock using other target tissues. The CRYAB gene, which encodes for 349 

Crystallin Alpha B protein, is upregulated in the liver, duodenum, and adipose tissue of 350 

L-FE pigs (Gondret et al., 2017; Ramayo-Caldas et al., 2018), in the jejunum in cattle 351 

(Lindholm-Perry et al., 2016), and in breast muscle in poultry (Bottje et al., 2014). This 352 

gene, and HSPB1 (also known as HSP27), are members of the heat-shock protein family. 353 

The expression of heat-shock proteins increases as a cellular response mechanism to a 354 

stressor (Archana et al., 2017). HSPB1 codifies heat-shock protein Family B (Small) 355 

Member 1, and contradictory findings have been found for this gene regarding feed 356 

efficiency. In beef cattle, higher expression of HSPB1 has been associated with H-FE 357 

animals (Jung et al., 2017; Carvalho et al., 2019), whereas in broilers, this gene is 358 

upregulated in L-FE animals (Bottje et al., 2012). In our study, CRYAB and HSPB1 were 359 

upregulated in L-FE sheep, which agrees with the results reported in pigs by Ramayo-360 

Caldas et al. (2018). Findings in dairy cows demonstrated that less efficient animals have 361 

higher heat production than efficient ones (Kennedy et al., 2021). Previous studies have 362 

revealed associations between SNPs in heat-shock proteins and traits such as respiration 363 

rate and body temperature (Charoensook et al., 2012; Deb et al., 2013; Singh et al., 2017). 364 

Thus, it could be speculated that animals with a higher expression of heat-shock proteins 365 

are less efficient due to energy losses in greater heat production. Lastly, we would like to 366 

highlight the role of gene SESN2 in lactation and its potential impact on feed efficiency, 367 

which could be a novel finding. SESN2, which codifies for sestrin2, belongs to a family 368 
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of conserved, stress-inducible regulators of metabolism. A study on the influence of the 369 

expression of this gene on lactation suggested that SESN2 negatively regulates cell 370 

proliferation and casein synthesis in cow mammary epithelial cells (Luo et al., 2018). 371 

Thus, the upregulation of SESN2 in L-FE animals would lead to a decrease in milk yield, 372 

confirmed in the companion paper by Toral et al. (2021). The fact that SESN2 is involved 373 

in cell proliferation, such as other genes found in common by DEA and sPLS-DA 374 

approaches (specifically KIF20A, KIF4A, TOP2A, NKX3-1, CCNA2, PRC1), emphasizes 375 

the complementarity of the different methodologies applied and supports the potential 376 

relevance of mammary cell division for feed efficiency in dairy sheep.  377 

CONCLUSION 378 

The results from this study provide novel insights into the biological basis of feed 379 

efficiency in dairy sheep, highlighting the informative potential of the mammary gland as 380 

a target tissue and revealing the usefulness of combining univariate and multivariate 381 

analysis approaches to elucidate the molecular mechanisms controlling complex 382 

phenotypes. The DEA between sheep with divergent feed efficiency allowed the 383 

identification of genes associated with the immune system and stress in L-FE animals. In 384 

addition, the sPLS-DA approach revealed the importance of genes involved in cell 385 

division (e.g., KIF4A and PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, 386 

GPAM, and ACOX3) for the H-FE sheep in the lactating mammary gland transcriptome. 387 

We also detected a set of genes commonly identified by the two statistical approaches, 388 

including some involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or 389 

encoding heat-shock proteins (CRYAB or HSPB1). Further research would be needed to 390 

elucidate the potential role of these genes as candidate biomarkers of feed efficiency in 391 

dairy sheep.  392 
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 660 

Table 1. Genes found in common by the differential gene expression analysis (DEA) and 661 

the sparse Partial Least Square-Discriminant analysis (sPLS-DA). 662 

Gene Name 
DEA  sPLS-DA 

FC1 (log2) P-value P-adj2 VIP3 Loadings4 

HS3ST1 -3.22 4.89E-06 1.06E-02 2.32 -0.02 

PDE4C -2.70 2.47E-04 4.79E-02 7.63 -0.06 

IQCF1 -2.51 2.05E-04 4.43E-02 5.27 -0.04 

HSPB1 -2.20 8.32E-05 3.31E-02 2.78 -0.02 

NKX3-1 -2.02 9.85E-05 3.70E-02 2.09 -0.02 

SESN2 -1.67 1.12E-04 3.70E-02 7.08 -0.06 

LOC101111669 -1.47 1.96E-04 4.28E-02 3.63 -0.03 

LOC101115355 -1.06 1.18E-04 3.70E-02 11.83 -0.10 

PRC1 1.19 1.93E-04 4.28E-02 15.71 0.13 

TOP2A 1.49 1.85E-06 4.66E-03 18.29 0.15 

MYO7A 1.67 2.90E-05 2.29E-02 17.56 0.14 

CCNA2 1.75 7.10E-05 3.12E-02 10.10 0.08 

PRDM5 1.76 1.64E-04 4.08E-02 5.93 0.05 

KIF20A 1.85 1.43E-05 1.45E-02 13.10 0.11 

KIF4A 1.91 1.30E-05 1.40E-02 13.04 0.11 
1 FC = fold change. Negative values correspond to higher expression in low feed-663 
efficiency animals. Positive values correspond to higher expression in high feed-664 

efficiency animals 665 
2 P-adj= False Discovery Rate (FDR) multiple test correction performed by DESeq2. 666 
3 VIP= variable importance in projection. 667 
4 Loadings= value of the gene's loading weight (importance) on the first component of 668 

the sPLS-DA. 669 
 670 
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Figure 1. Functional enrichment results from the differential gene expression analysis between high (H-FE) and low (L-FE) feed efficiency 672 

animals. In the GOCircle plot, the significant GO terms enriched (FDR < 0.05) after a reduction of the terms with a gene overlap greater than 80% 673 

are represented. The outer circle shows a scatter plot for each GO term of the logFC of the genes clustered in the term. The blue circles are genes 674 

downregulated in H-FE, while red circles are upregulated genes in H-FE sheep. The inner circle shows a bar plot representing the z-score for each 675 

GO term. The red bar means that the GO term is upregulated for H-FE, while the blue bar indicates the GO term is upregulated for L-FE. 676 

 677 
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Figure 2. Results from the sparse Partial Least Square-Discriminant analysis (sPLS-DA). A) Sample prediction area plot from the sPLS-DA 679 

model applied on the RNA-Seq data set from high (H-FE; orange triangles) and low (L-FE; blue circles) samples using as the distance for prediction 680 

“maximum distance”. B) Loading plot of the top 20 discriminating genes on the first component between high and low feed efficiency animals, 681 

colors indicate the group in which the mean expression is maximal for each gene (H-FE: orange and L-FE: blue). C) GOCircle plot showing the 682 

significant GO terms and pathways enriched (FDR < 0.05) after a reduction of the terms with a gene overlap greater than 80% are represented. The 683 

outer circle shows a scatter plot for each term of the logFC of the genes clustered in the term. The blue circles are genes downregulated in H-FE, 684 

while the red circles are upregulated genes in H-FE sheep. The inner circle shows a bar plot representing the z-score for each term. The red color 685 

means that the GO term is upregulated for the H-FE group; the red color intensity is associated with the value of the z-score.686 
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5 Conclusion 

The milk somatic cell transcriptome analysis in lactating ewes monitored for estimating feed efficiency 

combining univariate (DEA) and multivariate (sPLS-DA) approaches has revealed some of the molecular 

mechanisms involved in feed efficiency in dairy sheep. The DEA allowed the identification of a higher 

expression of genes associated with the immune system and stress in less efficient animals. In addition, 

the sPLS-DA approach revealed the importance of genes involved in cell division and cellular lipid 

metabolic process for more efficient ewes. We also detected a set of genes commonly identified by 

the two statistical approaches, including some involved in cell proliferation or encoding heat-shock 

proteins. These results allow us to postulate what happens at the level of the mammary gland in sheep. 

On the one hand, it is observed that in less efficient animals, part of the cellular energy in the mammary 

gland is dedicated to the maintenance of the physiology of the organ (immune system and stress 

control). In contrast, the more efficient animals present a greater number of secretory cells in the acini 

of their mammary glands and a higher metabolic activity of synthesis of milk components. 

6  Deviations or delays 

none 

 


