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About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

 SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges.  

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency.  
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1 Summary 

Resource allocation models, embedded into mechanistic host-pathogen interaction models can 

provide powerful decision support tools to be used by scientists, farmers and animal breeders for 

managing trade-offs and optimising resilience and efficiency (R&E) of animals under a variety of 

challenging conditions. The objective of this study was to provide mechanistic models to simulate 

potential trade-offs during infectious or nutritional challenges at the animal level. Here we describe a 

mechanistic host-pathogen interaction model for gastro intestinal infections in sheep based on 

resource allocation to analyse trade-offs during infectious and nutritional challenges. The model has 

been calibrated with data from the parasite resistance Romane sheep line experiments conducted in 

SMARTER. Nutritional costs associated with host resistance to gastro-intestinal parasite infections 

have been estimated and used to predict and manage trade-offs. Based on our experimental data, we 

conclude that a positive energy cost of  parasite resistance is likely. This energy cost can lead to a 

genetic trade-off between parasite resistance and fat deposition in lambs and may thus constrain 

breeding strategies in particular when feed energy is scarce. This deliverable D3.3 reports the work 

done in the form of a scientific manuscript and supplies the correponding code in Appendix1. A short 

description of complementary analysis on a second allocation model developed for goat is given in 

Appendix2. 

2 Introduction 

The magnitude of nutritional costs of mounting and maintaining an immune response have been 

subject of much debate among immunologists and nutritional scientists (Coop and Kyriazakis, 1999; 

Lochmiller and Deerenberg, 2000; Colditz, 2007). Such costs are also thought to be of primary 

importance in the evolution of life-history strategies as they provide the basis for resource allocation 

trade-offs between immune defences and other fitness components such as growth and reproduction 

(Sheldon and Verhulst, 1996). Thus, estimating these costs is also vital for devising effective practical 

solutions to combat infectious diseases, including nutritional or breeding strategies.  

For gastro-intestinal nematode (GIN) infections in sheep, both nutrient supplementation or selective 

breeding for increased disease resistance have been described as promising strategy for the 

sustainable control of parasitism in grazing systems (Stear et al., 2001; Kahn et al., 2003). While 

promoting a strong immunity to GIN should alleviate parasite-induced damage, a metabolic cost 

through the diversion of nutrients away from productive functions may incur (Greer, 2008). 

Accordingly, there may be an optimal level of immunity to select on, which depends on the nutrient 

allocation and on the costs of immunity (Bishop and Stear, 2003). These would need to be estimated 

in order to accurately predict selection responses. 

In domestic livestock, nutrient allocation theory (Beilharz et al., 1993; Rauw, 2009) forms the basis for 

modelling the effect of infections on productive performance and health (Doeschl-Wilson et al., 2009). 

In particular, for gastro-intestinal parasite infections in sheep, such models have demonstrated how 

trade-offs between production and immunity can arise and can be managed, e.g. through selective 

breeding or other management solutions (Vagenas et al., 2007a; Laurenson et al., 2012; Saccareau et 

al., 2016). However, in these models, the predicted effects and optimal solutions depend strongly on 
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assumptions regarding the nutritional costs associated with host immunity (Doeschl-Wilson et al., 

2008).  

Yet, obtaining reliable quantitative estimates of such costs from field or experimental data remains 

difficult (e.g. indirect effects, integrated and organisational characteristics of the immune system with 

other physiological systems, data).  

Our aim was to estimate trade-offs and the energetic cost of mounting an immune response against 
GIN infection by fitting a mechanistic host-parasite interaction model to experimental data from 
female lambs from lines divergently selected for their resistance to Haemonchus contortus and 
challenged with this parasite.  

3 Material and Methods 

3.1 Model description 

3.1.1 Model scope and main assumptions 

The model scope is a growing non-reproducing sheep fed ad libitum with a protein-rich diet, infected 

with a given dose of third stage infective larvae.  It is assumed that energy intake is known.  

The model consists of two interacting sub-models representing the host-parasite system and the host 

energy balance (Fig. 1). The host-parasite system includes two components: the parasite development 

within the host (from third stage infective larvae 𝐿𝐼 to reproducing adults 𝐴𝑚 and 𝐴𝑓𝑁𝐿), and the host 

immune responses against the infection. As for prey-predator models (Fenton & Perkins, 2010), these 

two components interact dynamically as parasitic load triggers the immune responses which in turn, 

act on parasite development. The immunological mechanisms by which animals have or acquire 

resistance to haemonchosis are highly complex and still largely unravelled. Here we defined two latent 

immune response variables, 𝐼𝐸 and 𝐼𝐹 acting on two key stages of parasite development, i.e. , 𝐼𝐸 

limiting the establishment of infective L3 larvae (𝑘𝐸), and , 𝐼𝐹 limiting the reproductive maturation of 

adult females (𝑘𝐹)).  

For modelling energy balance, we assumed that protein accretion (𝑃) to reach mature size drives body 

growth and remains unaffected by the infection in its early stages. Excess energy (not used for protein 

growth or maintenance) then fuels body lipid deposition (𝐿) and leads to change in body condition. 

Further, just as the synthesis and maintenance of a gram of protein or of lipid has an energy cost (e.g. 

𝑒𝑔𝑟𝑜𝑤𝑡ℎ or 𝑒𝑑𝑒𝑝 in Table 1), we considered that energy costs may also exist for immune responses (𝑒𝐼𝐸
 

or 𝑒𝐼𝐹
 in Table 1). However, in contrast to 𝑒𝑔𝑟𝑜𝑤𝑡ℎ or 𝑒𝑑𝑒𝑝 whose values are relatively well-known from 

the literature, the values of 𝑒𝐼𝐸
 or 𝑒𝐼𝐹

 are unknown.  

We aimed to assess if immune responses contribute significantly to the energy balance and to estimate 

the corresponding energy costs (𝑒𝐼𝐸
 and 𝑒𝐼𝐹

). For this, the model was fit to experimental data and the 

quality of fit was assessed both at the individual and at the population level. The detailed methodology 

of this process is described later (section 3.3). Briefly, at the individual level, blood haematocrit and 

fecal egg count measures were used to indirectly estimate the magnitudes of the host immune 

responses 𝐼𝐸 and 𝐼𝐹. Simultaneously, data on feed intake, body growth and condition were used to 

estimate the energy balance of each infected sheep, specifically their protein growth rate. Whilst the 

magnitude of the host immune response and energy balances vary both over time within an individual, 

and across individuals,  the energy costs associated with the synthesis and maintenance of a gram of 

protein or of lipid  𝑒𝑔𝑟𝑜𝑤𝑡ℎ or 𝑒𝑑𝑒𝑝, and of 𝑒𝐼𝐸
 or 𝑒𝐼𝐹

 associated with one unit measure of 𝐼𝐸 and 𝐼𝐹, 
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respectively, were assumed to be equal among individuals. Hence, we repeated individual parameter 

estimations using different fixed values of 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 and looked for the best average quality of fit at 

the population level. In particular, if the best fit was obtained without immune energy cost (i.e. using 

𝑒𝐼𝐸
 = 0 and 𝑒𝐼𝐹

 = 0), this would support the hypothesis that body growth and parasite resistance are 

independent. In contrast, positive estimates of 𝑒𝐼𝐸
 or 𝑒𝐼𝐹

 would support the hypothesis that an energy 

allocation trade-off occurs between parasite resistance and body condition. 

 

Figure 1: Conceptual diagram of the host-parasite model coupled with a model of host energy balance to estimate 
the energetic cost of immune responses from experimental data.  

3.1.2 Parasites dynamic within-host 

The model describes the successive stages of parasite development within the host, from third stage 

larvae intake (𝐿𝐼) to fourth-stage larvae established in the abomasum (𝐿𝐸), and then from 𝐿𝐸 to adult 

fifth stage males (𝐴𝑚) or females (𝐴𝑓). Within females, the transition between non-laying (𝐴𝑓𝑁𝐿) to 

laying females (𝐴𝑓𝐿) is represented as this last transition towards the most pathogenic stage largely 

determines the severity of the infection.  

The infection dynamics from the day of inoculation (t = 0 and 𝐿𝐼 equal to initial dosis 𝐿𝐼0) onwards is 

described by the following system of ordinary differential equations:  

𝑑𝐿𝐼

𝑑𝑡
 =  − (𝜇𝐿𝐼 + 𝑘𝐸) ∙ 𝐿𝐼 

Eq. (1) 

where 𝑘𝐸 = 0 if t ≤ 𝜏𝐿𝐼  

𝑑𝐿𝐸

𝑑𝑡
 =  𝑘𝐸 ∙ 𝐿𝐼 −  (𝜇𝐿𝐸 +  𝑘𝐴) ∙ 𝐿𝐸 

Eq. (2) 
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where 𝑘𝐴 = 0 if t ≤ 𝜏𝐿𝐸  

 

 

𝑑𝐴𝑚

𝑑𝑡
 =   𝑝𝐴𝑚 ∙  𝑘𝐴 ∙ 𝐿𝐸 −  𝜇𝐴𝑚 ∙ 𝐴𝑚 Eq. (3) 

 

𝑑𝐴𝑓𝑁𝐿

𝑑𝑡
 =  (1 − 𝑝𝐴𝑚)  ∙  𝑘𝐴 ∙ 𝐿𝐸 −   (𝜇𝐴𝑓𝑁𝐿

+  𝑘𝐹) ∙ 𝐴𝑓𝑁𝐿 Eq. (4) 

 

𝑑𝐴𝑓𝐿

𝑑𝑡
 =  𝑘𝐹 ∙ 𝐴𝑓𝑁𝐿  −   𝜇𝐴𝑓𝐿 ∙ 𝐴𝑓𝐿 Eq. (5) 

 

where 𝑘𝐸, 𝑘𝐴 and 𝑘𝐹  are transition rates that determine parasites establishment, development and 

fecundity and μ parameters are stage-specific mortality rates. Parasite sex is considered when 

parasites become adults, with 𝑝𝐴𝑚 indicating the proportion of males. Among the different stages of 

the parasitic phase, larvae establishment, adult fecundity, and adult mortality are considered to be key 

targets of the host immune system (Louie et al., 2005). Here we considered immune effects on parasite 

establishment and fecundity (𝑘𝐸 and 𝑘𝐹)  during the first stages of infection that we studied 

experimentally, and assumed constant mortality rates (𝜇) and rate of development from L4 to adults 

(𝑘𝐴). Establishment rate 𝑘𝐸 and female transition rate 𝑘𝐹 were considered at maximum values 𝑘𝐸0
and 

𝑘𝐹0
 in the absence of any immune effect, and their values were reduced proportionally to the 

magnitude of specific immune responses 𝐼𝐸 and 𝐼𝐹, respectively (further details in section ‘Host 

immune responses’). Moreover, there is a minimum time 𝜏𝐿𝐼 required by ingested third-stage larvae 

(𝐿𝐼) before reaching host abomasum and establishment, and then a minimum time 𝜏𝐿𝐸  to transform 

into adult fifth stage (𝐴𝑚 or 𝐴𝑓𝑁𝐿). Thus, 𝑘𝐸 and 𝑘𝐴 were set to 0 when t ≤ 𝜏𝐿𝐼  and when t ≤ 𝜏𝐿𝐸 , 

respectively. 

 

Female worm fecundity is closely related to their body size which increases as they growth. To simplify 

we assumed that 𝐴𝑓𝑁𝐿 represents an average worm of constant size and fecundity 𝐹0 (i.e. average 

laying rate) so that the inverse of 𝑘𝐹 corresponds to the average development time to reach that size 

and lay eggs. Thereby, immune influence on 𝑘𝐹 controls whole population fecundity, that is the total 

eggs excretion: 𝐴𝑓𝐿 ∙ 𝐹0. 

 

In order to fit the model to the experimental data, the dynamics of fecal egg counts (𝐹𝐸𝐶) and blood 

haematrocit level (𝐻𝐸) was also modelled. Specifically, 𝐹𝐸𝐶 (eggs number excreted per day and per 

gram of feces) was defined in relation to the mass of feces produced daily by the host (𝐹𝑒𝑐𝑒𝑠) as 

follows: 

 

𝐹𝐸𝐶 =  
𝐴𝐹𝐿 ∙ 𝐹0

𝐹𝑒𝑐𝑒𝑠
 Eq. (6) 

with 
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𝐹𝑒𝑐𝑒𝑠 =  
𝐹𝐼 ∙ 𝐷𝑀𝐶𝐹𝑒𝑒𝑑  ∙ (1 −  𝐷𝑀𝐷𝐹𝑒𝑒𝑑)

𝐷𝑀𝐶𝐹𝑒𝑐𝑒𝑠
 Eq. (7) 

 

Time change in 𝐻𝐸 was defined by a constant replication rate 𝛼𝐻𝐸  and a per capita loss 𝛽𝐻𝐸  under 

non-challenging conditions. Under infectious challenge, 𝐻𝐸 dynamics is also affected by parasitic 

consumption. Blood haematocrit (𝐻𝐸) was negatively affected by the total number of parasites. This 

loss was assumed to depend on the parasitic loads associated with the different established parasitic 

stages (𝐿𝐸, 𝐴𝑚, 𝐴𝑓𝑁𝐿 and 𝐴𝑓𝐿) and on the corresponding stage-specific effects 𝜔:  

 

𝑑𝐻𝐸

𝑑𝑡
 =  (𝛼𝐻𝐸 −  𝛽𝐻𝐸 ∙ 𝐻𝐸)  − (𝜔𝐿𝐸 ∙ 𝐿𝐸 +  𝜔𝐴𝑚 ∙ 𝐴𝑚 +  𝜔𝐴𝑓𝑁𝐿

∙ 𝐴𝑓𝑁𝐿          

+  𝜔𝐴𝑓𝐿
∙ 𝐴𝑓𝐿)    

Eq. (8) 

 

For better ease of parameterization, we defined 𝐻𝐸0 as the equilibrium level of 𝐻𝐸 that equals 

𝛽𝐻𝐸 /𝛼𝐻𝐸  in the absence of infection. 

Our model accounts for the fact that 𝐻𝐸 and 𝐹𝐸𝐶 dynamics may reflect different biological processes 

that can be differently controlled by host immunity (e.g. 𝐻𝐸 can decrease due to some worm burden 

but this does not necessarily implies a correlated increase in 𝐹𝐸𝐶 if for instance the host develops a 

strong anti-fecundity response). Nevertheless, 𝐻𝐸 and 𝐹𝐸𝐶 may still be moderately to strongly 

negatively correlated in accordance with the literature (Vanimisetti et al., 2004). 

3.1.3 Host immune response 

Effects of the host immune response 𝐼𝐸 and 𝐼𝐹 on 𝑘𝐸  and 𝑘𝐹, respectively, were assumed to follow a 

sigmoidal pattern (Louie et al., 2005; Fenton and Perkins, 2010), so that at low levels of immunity  the 

responses are relatively inefficient (e.g. in naïve animals) whereas they saturate at high levels, for 

instance due to time constraints on immune cells to neutralize parasites. In model terms, the maximum 

(𝑘𝐸0
and 𝑘𝐹0

), the inflection point (𝐼𝐸0.5
 and 𝐼𝐹0.5

) and the shape (𝛼𝑘𝐸and 𝛼𝑘𝐹) were determining 

sigmoidal patterns as follows: 

𝑘𝐸(𝐼𝐸) =  
1

(
𝐼𝐸

𝐼𝐸0.5

)
𝛼𝑘𝐸

+  1

 ∙ 𝑘𝐸0
 

Eq. (9) 

 

and 

𝑘𝐹(𝐼𝐹) =  
1

(
𝐼𝐹

𝐼𝐹0.5

)
𝛼𝑘𝐹

+  1

 ∙  𝑘𝐹0
 

Eq. (10) 

 

The development of immune response against parasite establishment 𝐼𝐸 was assumed to be triggered 

by the intake of L3 larvae (𝐿𝐼). As for the immune effect on parasite we assumed that the increase in 

the replication rate of 𝐼𝐸 according to 𝐿𝐼 followed a sigmoidal pattern: 
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𝑑𝐼𝐸

𝑑𝑡
= (𝜑𝐼𝐸

  ∙  
1

(
𝐿𝐼0.5

𝐿𝐼 )
𝛼𝐼𝐸

+ 1

 ∙ 𝐼𝐸) − 𝛽𝐼𝐸
· (𝐼𝐸  − 𝐼𝐸0

)  Eq. (11) 

 

The early immune response 𝐼𝐸, in interaction with the number of L4 established larvae (𝐿𝐸) were then 

assumed to elicit the immune response 𝐼𝐹 against the reproduction of adult parasites as follows: 

𝑑𝐼𝐹

𝑑𝑡
=  (𝜑𝐼𝐹

∙ (𝐼𝐸  − 𝐼𝐸0
) ∙ 𝐿𝐸) −  𝛽𝐼𝐹

· (𝐼𝐹 − 𝐼𝐹0
)   Eq. (12) 

 

Of note, an increase in 𝜑𝐼𝐸
 will lead to an increase in 𝐼𝐸 (Figure 2A), as well as in 𝐼𝐹  in case of positive 

𝜑𝐼𝐹
 (Figure 2C), respectively. Whereas 𝜑𝐼𝐹

 only affect 𝐼𝐹 (Figure 2B) and has no effect on 𝐼𝐸, 𝜑𝐼𝐸
 has a 

non-linear effect on 𝐼𝐹 (Figure 2C). For low values of 𝜑𝐼𝐸
, 𝐼𝐸 increases faster than 𝐿𝐸 declines (i.e. the 

product (𝐼𝐸  − 𝐼𝐸0
) ∙ 𝐿𝐸 increases) whereas for higher values of 𝜑𝐼𝐸

, 𝐼𝐸 effectively reduces 𝐿𝐸 which 

then subsequently reduces the immune response 𝐼𝐹  (as a stimulation of a strong 𝐼𝐹  would be pointless).  

This non-linear effect is more pronounced for higher values of 𝜑𝐼𝐹
 (Figure 2C). 

 

Figure 2: Effect of replication rate of each immune response over the course of an infection (effect of 𝜑𝐼𝐸
 on 𝐼𝐸) 

(A); effect of 𝜑𝐼𝐹
 on 𝐼𝐹  (B), and indirect effect of 𝜑𝐼𝐸

 on 𝐼𝐹  depending on 𝜑𝐼𝐹
 (C) with maximum 𝐼𝐹  values observed 

during infection on the y-axis. 

 

Table 1 List of model parameters 

Parameter Definition Value Source 

Parasites development 

𝜇𝐿𝐼; 𝜇𝐿𝐸 ; 
𝜇𝐴𝑚; 𝜇𝐴𝑓𝑁𝐿

; 𝜇𝐴𝑓𝐿  
Mortality rates of LI, LE,  
and of Am, AfNL, AfL  

0.18; 0.01; 
0.015  

[1] 

𝑝𝐴𝑚
 Proportion of LE that are males (the remaining 

proportion 1 - 𝑝𝐴𝑚
are females) 

0.5 assumed 

𝑘𝐸0
; 𝑘𝐹0

 Maximum transition rates from LI to LE (establishment), 
and from AfNL to AfL (fecundity) 

2; 0.3 assumed 

𝑘𝐴  Constant transition rate from LE to Am and AfNL 0.62 assumed 
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Parameter Definition Value Source 

𝜏𝐿𝐼 ; 
𝜏𝐿𝐸  

Minimum time delay (in days) from ingestion to 
establishment site, and from establishment to 
emergence 

2 
15 

[1] 

𝐹0  Fecundity rate per capita (number of eggs per day and 
per adult female) 

3000 [2] 

𝜔𝐿𝐸  ; 𝜔𝐴𝑚; 𝜔𝐴𝑓𝑁𝐿
; 

𝜔𝐴𝑓𝐿
 

Loss in HE per capita for parasite categories LE, Am, AfNL, 
and AfL, respectively 

(×1e-5) 15; 50; 
50; 110 

[3] 

Host immune response 

𝐼𝐸0.5
; 𝐼𝐹0.5

 Levels of IE and IF at which kE and kF respectively, are 
reduced of 50% 

5 assumed 

𝛼𝑘𝐸; 𝛼𝑘𝐹  Shape factor of immune effects on kE and kF 3 assumed 

𝜑𝐼𝐸
; 𝜑𝐼𝐹

 Per capita replication rate of IE and IF, respectively assumed to vary between 
individuals;  

estimated (individual level) 

𝛼𝐼𝐸  Shape factor of parasite effect (LI) on IE replication 3 assumed 

𝐿𝐼0.5 Level of LI at which IE replication is at 50% of its maximum  3000 assumed 

𝐼𝐸0
; 𝐼𝐹0

 Baseline levels   1 assumed 

𝛽𝐼𝐸
; 𝛽𝐼𝐹

  0.05 assumed 

Host energy balance 

𝛼𝑃𝑚
 Scaling exponent of 𝑃𝑚 0.27 [4] 

𝑃𝑚 Protein weight at maturity 
assumed to vary between 

individuals; estimated 
(individual level) 

𝐿𝑚 Lipid weight at maturity 

𝛽𝑃 Relative protein growth rate   

𝛽𝑊𝑜𝑜𝑙  Wool growth rate 

𝑒𝑔𝑟𝑜𝑤𝑡ℎ; 𝑒𝑚𝑎𝑖𝑛𝑡; 

𝑒𝑑𝑒𝑝; 𝑒𝑚𝑜𝑏  

Unitary energy cost (in MJ/kg) of protein growth, protein 
maintenance, lipid deposition, and lipid mobilization, 
respectively. 

56; 1.63;  
50; 39.6 

[4] 

𝑒𝐼𝐸
; 𝑒𝐼𝐹

 Unitary energy cost (in MJ/unit) of immune responses IE 
and IF, respectively  

Estimated  
(population level) 

Observed host traits  

𝛾𝐴𝑠ℎ; 𝛾𝑊𝑎𝑡𝑒𝑟  Fixed ratio Ash:P and Water:Pm, respectively 0.211; 3.25  [4] 

𝛼𝑊𝑎𝑡𝑒𝑟  Scaling factor of protein maturity determining the 
proportion of body water 

0.815 [4] 

𝑎𝐺𝑢𝑡_𝐹𝑖𝑙𝑙; 𝑏𝐺𝑢𝑡_𝐹𝑖𝑙𝑙  Coefficients to predict Gut_Fill from Feed_Energy 11; 0.467 [5] 

𝑎𝐵𝐹𝑇  ; 𝑏𝐵𝐹𝑇 ; 𝑐𝐵𝐹𝑇  Coefficients to predict Backfat_Thickness -4.01; 0.56; 
1.52 

[6] 

𝐷𝑀𝐶𝐹𝑒𝑐𝑒𝑠  Dry matter content of the feces 0.35 assumed 

Diet characteristics 

𝐷𝑀𝐶𝐹𝑒𝑒𝑑  Dry matter content of the feed 0.88 known 
inputs 𝐷𝑀𝐷𝐹𝑒𝑒𝑑  Dry matter digestibility of the feed  0.76 

𝑀𝐸𝐶𝐹𝑒𝑒𝑑  Metabolizable energy content of the feed (MJ/kg of DM) 7.7 

[1] Smith (1988); [2] Saccareau et al. (2017); [3] Dargie and Allonby (1975); [4] Emmans (1997); Wellock et al. (2004); [5] 

Laurenson et al. (2011); [6] Macfarlane et al. (2006) 

3.1.4 Host energy balance 

The host energy balance (𝐸𝐵) was defined as the energy intake minus the sum of the different energy 

requirements:  

𝐸𝐵 =  𝐸𝑖𝑛𝑡𝑎𝑘𝑒  −  (𝐸𝑔𝑟𝑜𝑤𝑡ℎ  + 𝐸𝑚𝑎𝑖𝑛𝑡  +  𝐸𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦) Eq. (13) 
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and then determined the rate of lipid (𝐿) deposition or mobilization: 

𝑑𝐿

𝑑𝑡
 =  𝑒𝑑𝑒𝑝 ∙ 𝐸𝐵 𝑖𝑓 𝐸𝐵 ≥ 0  𝑎𝑛𝑑 

𝑑𝐿

𝑑𝑡
 = 𝑒𝑚𝑜𝑏 ∙ 𝐸𝐵 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. Eq. (14) 

This model was based on a previous nutritional growth model (Emmans, 1997; Wellock et al., 2004), 

except that we added the component  𝐸𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦 and sought to estimate its parameters based on our 

experimental data. Specifically, 𝐸𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦 was considered as a weighted sum of immune responses 𝐼𝐸   

and 𝐼𝐹: 

𝐸𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦  =  𝑒𝐼𝐸
∙ 𝐼𝐸  +  𝑒𝐼𝐹

∙ 𝐼𝐹 Eq. (15) 

where the weighing factors 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 represent the energy costs per unit of immune component 𝐼𝐸   

and 𝐼𝐹. Their values were assumed to be constant among individuals.    

In the 𝐸𝐵 equation, 𝐸𝑖𝑛𝑡𝑎𝑘𝑒 was obtained using individual spline estimate of 𝐹𝐼 according to the time 

of infection and assuming constant feed characteristics: 

𝐸𝑖𝑛𝑡𝑎𝑘𝑒  =  𝐹𝐼 ·  𝐷𝑀𝐶𝐹𝑒𝑒𝑑 · 𝑀𝐸𝐶𝐹𝑒𝑒𝑑 Eq. (16) 

The energy requirement for protein accretion (𝐸𝑔𝑟𝑜𝑤𝑡ℎ) was driven by the temporal changes in carcass 

protein (𝑃) and 𝑊𝑜𝑜𝑙: 

𝐸𝑔𝑟𝑜𝑤𝑡ℎ  =  𝑒𝑔𝑟𝑜𝑤𝑡ℎ ∙ (
𝑑𝑃

𝑑𝑡
 +  

𝑑𝑊𝑜𝑜𝑙

𝑑𝑡
) Eq. (17) 

where 𝑃 followed a Gompertz growth, with a target amount of protein at maturity (𝑃𝑚) and a growth 

rate parameter (𝛽𝑃) estimated individually:   

𝑑𝑃

𝑑𝑡
 =  𝛽𝑃 ∙ (

𝑃

𝑃𝑚

𝛼𝑃𝑚
) ∙ 𝑙𝑜𝑔 (

𝑃𝑚

𝑃
) Eq. (18) 

 

𝑊𝑜𝑜𝑙 was assumed to growth proportionally to 𝑃 and was depleted when sheep were shorn.  

𝑑𝑊𝑜𝑜𝑙

𝑑𝑡
 =  𝛽𝑊𝑜𝑜𝑙 ∙ 𝑃 Eq. (19) 

Finally, the ratio between 𝑃 and scaled mature protein (𝑃𝑚

𝛼𝑃𝑚 ) determined the change in energy 

requirements for animal maintenance during its development: 

𝐸𝑚𝑎𝑖𝑛𝑡  =   𝑒𝑚𝑎𝑖𝑛𝑡 ∙ (
𝑃

𝑃𝑚

𝛼𝑃𝑚
) Eq. (20) 

 



  SMARTER – Deliverable D3.3 
 

 

S M A R T E R  -  H 2 0 2 0                                         P a g e  11 | 32 

 

Based on previous state variables P and L and on estimated FI, observed growth traits (BW and BFT) 

were defined as auxiliary variables with fixed parameters (specified in Table 1). Bodyweight was the 

sum of the different body components:    

𝐵𝑊 =  𝑃 +  𝐿 +  𝑊𝑜𝑜𝑙 +  𝐴𝑠ℎ + 𝑊𝑎𝑡𝑒𝑟 +  𝐺𝑢𝑡_𝐹𝑖𝑙𝑙 Eq. (21) 

with   

𝐴𝑠ℎ =  𝛾𝐴𝑠ℎ ∙ 𝑃 Eq. (22) 

 

𝑊𝑎𝑡𝑒𝑟 =  𝛾𝑊𝑎𝑡𝑒𝑟 ∙ 𝑃𝑚 ∙ (
𝑃

𝑃𝑚
)

𝛼𝑊𝑎𝑡𝑒𝑟

 Eq. (23) 

and  

𝐺𝑢𝑡_𝐹𝑖𝑙𝑙 =  𝐹𝐼 ·  (𝑎𝐺𝑢𝑡_𝐹𝑖𝑙𝑙  − 𝑏𝐺𝑢𝑡_𝐹𝑖𝑙𝑙  ∙  𝑀𝐸𝐶𝐹𝑒𝑒𝑑) Eq. (24) 

Back fat thickness was derived from a previous allometric equation (Macfarlane et al., 2006), as 

follows: 

𝐵𝐹𝑇 =  𝑒𝑥𝑝 (
𝑙𝑜𝑔(𝐿)  −  𝑎𝐵𝐹𝑇  −  𝑏𝐵𝐹𝑇 ∙  𝑙𝑜𝑔(𝐵𝑊 −  𝐺𝑢𝑡_𝐹𝑖𝑙𝑙)

𝑐𝐵𝐹𝑇
)   Eq. (25) 

 

3.2 Experimental data from task 3.2 

We used data from task 3.2 describing an artificial infestation experiment in growing female lambs 

from two lines divergently selected for resistance to H. contortus (referred to as “Parasite resistance 

ROMANE sheep lines” in D3.2). Both lines originated from a prolific meat sheep breed (Romane) bred 

indoor at INRAE experimental facilities. Sheep were selected for resistance to parasites based on FEC 

measures, following a unique protocol comprising two successive infections as outlined in detail in 

(Sallé et al., 2012). Briefly, in the initial population, 274 naïve lambs were infected with a single dose 

of 10,000 L3 of H. contortus to stimulate a primary immune response; 4 weeks later they were treated 

(0.2 mg/kg of live weight of ivermectin; Oramec, Boerhinger Ingelheim, Lyon, France); after 2 weeks of 

recovery they were re-infected with a single dose of 10,000 L3 to simulate a secondary immune 

response and finally treated 5 weeks later. At the end of first and second infection, FEC was recorded 

just before treatment and those measures were combined to estimate animal breeding values for 

resistance used as selection criterion to generate the two divergently selected lines.  

This study then used data from ewe lambs from the second generation of selection for resistance (R = 

low FEC) or susceptibility (S = high FEC). At G2, the divergence in FEC between R and S sheep reached 

1.9 phenotypic SD (σp) and 3.8 genetic SD (σg) calculated from the initial population (G0). Specifically, 

91 female lambs were infected early to stimulate a primary immune response, and again at 4 months 

of age, following the same infection protocol as described above, except that the first dose was of 

3,500 L3/sheep to limit the potential negative consequences of infection on fertility at first mating (at 

8–9 months of age). The longitudinal data collected during the second infection were then used in this 

study to calibrate the host-parasite interaction model. Data included voluntary concentrate intake (in 
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kg/d; measured daily with automatic feeders) and five other traits measured at day 0, 17, 24, 28, 31, 

and 35 post-infection: FEC (in egg/g; measured by the modified McMaster technique), blood 

haematocrit (in %; measured by microhaematocrit centrifugation technique), body weight (in kg), back 

fat thickness and muscle thickness (BFT and MT, in mm; measured by ultrasound scan on both sides at 

the 12th– 13th lumbar vertebra (Easi- Scan™, IMV imaging)). Those traits could be linked to the model 

as shown in Fig.1. 𝐸𝑖𝑛𝑡𝑎𝑘𝑒 was estimated from concentrate intake and diet characteristics (Table 1) 

assuming that concentrate was the main source of feed energy (i.e. straw intake was considered as 

negligible). 

3.3 Methodology for parameter estimation 

According to the model, observed differences in the above measurable performance and resistance 

traits are caused by individual differences in the genetic potentials for growth (protein and lipid 

deposition) and wool production, as well as in the immune-response. These can be represented by the 

model parameters  𝜃 = (𝑃𝑚, 𝐿𝑚, 𝛽𝑃, 𝛽𝑊𝑜𝑜𝑙, 𝜑𝐼𝐸
, 𝜑𝐼𝐹

), (Table 1). In particular, sheep from the two 

selection lines for resistance described above would be expected to differ in the immune parameters 

(𝜑𝐼𝐸
, 𝜑𝐼𝐹

), but possibly not in their growth or wool production parameters as selection was on 

resistance only.  To account for individual variation in these latent parameters, these parameter values 

associated with each individual were estimated from the data, together with the constant population-

specific energy costs (𝑒𝐼𝐸
 and 𝑒𝐼𝐹

) associated with one unit of 𝐼𝐸  and 𝐼𝐹 respectively, in two main steps 

(Figure 3).  

 

Figure 3: Workflow of the model parameter estimation. Grey box indicates the two steps (1.1 and 1.2) of 
individual parameter estimation. Step (2) iterates the process 100 times to determine the optimal values of 
energy costs of immunity against H. contortus infection. 

First, estimates for the individual parameters  𝜃 =  (𝑃𝑚, 𝐿𝑚, 𝛽𝑃, 𝛽𝑊𝑜𝑜𝑙, 𝜑𝐼𝐸
, 𝜑𝐼𝐹

) were obtained. One 

part of those individual parameters related to growth (𝑃𝑚, 𝐿𝑚, 𝛽𝑃, 𝛽𝑊𝑜𝑜𝑙 ) were  estimated using data 

out-of-infection to describe the growth potential of each individual (step 1.1 in Figure 3). The other 

individual parameters that were related to immunity (𝜑
𝐼𝐸

, 𝜑𝐼𝐹
) were estimated using data during the 

infection period. For this last part, we assumed that values of growth parameters related to protein 

growth (𝑃𝑚, 𝛽𝑊𝑜𝑜𝑙 ) were  the same as out of infection, except the rate of protein synthesis 𝛽𝑃 that 

may be affected by infection and was thus re-estimated simultaneously to 𝜑𝐼𝐸
 and 𝜑𝐼𝐹

 (step 1.2 in 

Figure 3). When estimating the three parameters during the infection stage, we assumed fixed 
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constant values of the immune energy costs (𝑒𝐼𝐸
 and 𝑒𝐼𝐹

) and other population specific parameters 

listed in Table 1. Individual parameter estimates were obtained by minimizing differences between 

model predictions and data for that individual as outlined below. This procedure was then repeated 

for 100 different combinations of values for  𝑒𝐼𝐸
 and 𝑒𝐼𝐹

, and the most likely values of 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 were 

then selected as those that that minimise the differences between model predictions and data across 

all individuals (step 2 in Figure 3).  

3.3.1 Fitting criteria 

Individual values for the parameters were estimated based on the minimization of a normalized 

residual sum of squares for each individual i (𝑁𝑅𝑆𝑆𝑖) defined as follows: 

𝑁𝑅𝑆𝑆𝑖  =  ∑ (
∑ (𝑦̂𝑘,𝑡,𝑖  − 𝑦𝑘,𝑡,𝑖)

2𝑇𝑘
𝑡 = 1

𝑆𝐷(𝑦𝑘,𝑖)
) 

𝐾

𝑘 = 1

 Eq. (26) 

where 𝑦𝑘,𝑡,𝑖  and 𝑦̂𝑘,𝑡,𝑖 are the observed and predicted values, respectively, of trait 𝑘 for individual 𝑖 at 

time 𝑡. 𝑇𝑘 is the last time-measurement for trait 𝑘, 𝐾 is the number of measured traits and 𝑆𝐷(𝑦𝑘,𝑖) is 

the standard deviation of trait 𝑘 for individual 𝑖 that is used to normalize each 𝑅𝑆𝑆𝑘,𝑖. Note that each 

time-specific measurement of trait 𝑘 is given the same weight when calculating the whole 𝑁𝑅𝑆𝑆𝑖. 

When 𝑆𝐷(𝑦𝑘,𝑖) = 0 (as it can be the case for 𝐹𝐸𝐶 (log-transformed)) it was replaced by 1. 

The predicted values 𝑦̂𝑘,𝑡,𝑖  were obtained using the host-parasite model with a given set of parameters 

𝜃. We searched for the set of parameters 𝜃∗ that minimize 𝑁𝑅𝑆𝑆𝑖 using a modified version of the 

Levenberg-Marquardt algorithm. This was implemented in R using the nls.lm function of the R-package 

minpack.lm.  

The exact approach associated with the different steps is outlined below.  

3.3.2 Estimation of individuals’ growth parameters out-of-infection (step 1.1) 

In this step 1.1 (Figure 3), 𝐾 = 3 traits (𝐵𝑊, 𝐵𝐹𝑇 𝑎𝑛𝑑 𝑊𝑜𝑜𝑙) were used to determine the values of the 

four parameters 𝜃∗ = (𝑃𝑚, 𝐿𝑚, 𝛽𝑃, 𝛽𝑊𝑜𝑜𝑙) that minimise the corresponding 𝑁𝑅𝑆𝑆𝑖. A mentioned 

earlier, a central model assumption was that growth was driven by protein accretion to reach a 

genetically determined target value at maturity 𝑃𝑚. However this value could not be estimated reliably 

during the infection as the corresponding growth period was relatively short and feeding conditions 

were very favourable to fattening (i.e. concentrate ad libitum) compared to the periods where animals 

were uninfected (forage and concentrate to meet animal requirements). In this first step we thus 

aimed to estimate 𝑃𝑚 using growth data before and after the experimental period to capture the 

‘normal’ growth pattern before reproduction (Fig. 4A). For this we used the empirical growth equation 

(Eq. (18)). In addition to 𝑃𝑚  we also estimated the ‘normal’ protein growth rate parameter 𝛽𝑃 even 

though we considered that this parameter could vary during infection (cf. next sub-section 3.2.4). 

Based on 𝐵𝐹𝑇 and 𝑊𝑜𝑜𝑙 measurements it was possible to separate 𝑃𝑚 from other 𝐵𝑊 components 

at maturity (following Eq. (21-25)). Data on 𝐵𝐹𝑇 (Fig. 3B) was informative of the level of lipid. However, 

as food intake was not recorded out of the infection lipid deposition could not be calculated based on 

𝐸𝐵 during those periods (as shown in Eq. (14)). Instead a ‘normal’ lipid growth was assumed to follow 

a sigmoid pattern as proposed in (Emmans, 1997). This pattern is driven by 
𝑑𝑃

𝑑𝑡
 as follows: 
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𝑑𝐿

𝑑𝑡
 =  

𝑑𝑃

𝑑𝑡
∙  

𝐿𝑚

𝑃𝑚
∙ 𝑑 ∙ (

𝑃

𝑃𝑚
)

𝑑−1

 Eq. (27) 

where the estimated parameter 𝐿𝑚 represents the level of 𝐿 at maturity.  

Based on fleece weight recorded after the experimental period (Fig. 3A), we could also estimate the 

individual wool growth parameter 𝛽𝑊𝑜𝑜𝑙 of Eq. (19). Finally, in Eq. (21) all other BW components than 

𝑃, 𝐿 and 𝑊𝑜𝑜𝑙 were simply derived from 𝑃, assuming equal parameter values among individuals.  

 

Figure 4: Example of individual growth curve fitting to estimate protein weight at maturity based on body weight 
(BW) (A) and back fat thickness (BFT) (B) data measured out of infection. Points and solid lines represent observed 
data and model predictions, respectively. 

3.3.3 Estimation of individuals ‘parameters during infection for fixed values of immune 

energy costs (step 1.2) 

During the infection we used the two coupled sub-models (i.e. the host-parasite system and the host 

energy balance). Individually we estimated parameters 𝜑𝐼𝐸
 and 𝜑𝐼𝐹

 that set the magnitude of the two 

immune responses. For the energy balance sub-model, we used the values of 𝑃𝑚 and 𝛽𝑊𝑜𝑜𝑙 estimated 

out-of- infection (see previous sub-section) whereas we re-estimated 𝛽𝑃 considering that the protein 

growth rate (but not the target 𝑃𝑚) could deviate from the normal value estimated out-of-infection. In 

this step 1.2 (Fig. 3), lipid deposition was calculated based on food intake (Eq. (14)) so the parameter 

𝐿𝑚 was no longer needed. All other parameters related to immune responses were assumed equal 

among-individuals, including 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

. Thus, for each individual i the values of the parameters (𝜑𝐼𝐸
, 

𝜑𝐼𝐹
 and 𝛽𝑃), were determined that minimise the individual’s 𝑁𝑅𝑆𝑆𝑖 comprising 𝐾 = 4 traits 

(𝐹𝐸𝐶, 𝐻𝐸, 𝐵𝑊, 𝐵𝐹𝑇). 

3.3.4 Estimating the immune energy costs 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 (step 2) 

Estimates of individuals’ immune parameters following the procedure outlined in 3.3.1 were obtained 

for 100 (10 × 10) different combinations of values of 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 (step 2; Fig. 3). These combinations 

comprised 10 different values of 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

, respectively (within the range [0 ; 0.03] and [0 ; 0.021] ; 

for 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 respectively, with 10 equal increments within each case). For each combination, NRSS 

calculated during the infection (with K = 4 traits) was averaged over all individuals (from both lines). 
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The most likely combination of 𝑒𝐼𝐸
 and 𝑒𝐼𝐹

 was then considered as the one that minimize the 

average 𝑁𝑅𝑆𝑆. 

3.3.5 Predicted resilience trajectories 

To illustrate the different effects investigated in terms of dynamic individual responses over the course 

of the infection we represented the trajectories of the four observed traits (FEC, HE, BFT and BW) using 

the parameters corresponding to the different scenario.  

To assess the effect of positive immune energy costs, resilience trajectories were predicted for the 

scenario corresponding to the observed situation (using the optimal immune energy costs) vs. a 

scenario of zero energy cost (𝑒𝐼𝐸
 = 0 and 𝑒𝐼𝐹

 = 0) . 

To assess the effect of a nutritional challenge, resilience trajectories were also predicted for a scenario 

where the energy content of the feed intake was reduced compared to the observed situation. 

4 Results 

4.1 Growth parameters out-of-infection 

No difference was observed between the two selection lines among the four growth parameters 

estimated out of infection (Table 2). Note that the values of 𝛽𝑃 were close to the interspecific estimate 

(sheep and cattle) found by (Emmans, 1997) and equal to 0.02335 (termed ‘B*’ in (Emmans, 1997)).    

Table 1: Mean (with standard deviation) of growth parameters estimated out of infection in sheep from lines 
selected on resistance (R) or susceptibility (S) to Haemonchus contortus. Parameters are defined in Table 1. Line 
differences were tested based on unpaired t-test.  

Parameter Line R (n = 21) Line S (n = 21) t (df = 40) p 

𝑃𝑚 
𝐿𝑚 
𝛽𝑃  
𝛽𝑊𝑜𝑜𝑙 

6.88 (0.364) 
15.08 (2.033) 

0.0224 (0.0025) 
11·10-5 (3.5·10-5) 

6.75 (0.433) 
15.55 (2.602) 

0.0239 (0.0037) 
12.10-5  (2.7·10-5) 

1.027 
-0.641 
-1.551 
-0.518 

0.31 
0.53 
0.13 
0.61 

 

4.2 Energy costs of resistance to H. contortus (𝑒𝐼𝐸
and 𝑒𝐼𝐹

) 

Across the 42 individuals, the best average model fit was found for two positive value among the two 

energy costs assumed for immunity (i.e. 𝑒𝐼𝐸
 = 0.01 and 𝑒𝐼𝐹

 = 0.0072; Fig. 5). 
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Figure 5:  Model goodness of fit according to the assumed values for the energy cost of immunity against H. 
contortus (𝑒𝐼𝐸

 and 𝑒𝐼𝐹
 controlling immunity against larvae establishment and fecundity, respectively). The fitting 

criteria used for parameter estimation was the normalized residual sum of squares for each individual i (𝑁𝑅𝑆𝑆𝑖).  
The average 𝑁𝑅𝑆𝑆 over the 42 individuals is represented. The global optimum is indicated with an asterisk.  

Assuming immune energy costs improved the goodness-of-fit (mean of 𝑁𝑅𝑆𝑆𝑖 = 12.97 (SD = 4.73)) 

compared to the scenario where no immune energy cost was assumed (𝑁𝑅𝑆𝑆𝑖 = 14.54 (7.04)). This 

improvement was mostly observed in the R line. Indeed, under the zero-energy cost assumption the 

model tended to overestimate BW and BFT in the R line in particular, whereas this energy excess could 

be partly accounted for by the higher resistance to parasites in this line compared to the S line.  

The immune energy cost assumption affected the three individual parameters estimated during the 

infection (i.e. 𝜑𝐼𝐸
and 𝜑𝐼𝐹

 related to immunity and 𝛽𝑃 related to growth). As expected higher values of 

𝜑𝐼𝐸
and 𝜑𝐼𝐹

 were observed in the R line compared with the S line, regardless of whether energy costs 

apply or not. However assuming a positive energy cost further constrained the optimisation process 

which slightly attenuated the difference between lines (Table 3). In contrast, when immune energy 

costs applied, estimates of 𝛽𝑃 became closer and similar between lines. In general those estimates of 

𝛽𝑃 were lower during the infection period (c.a. 0.014-0.018) than out of infection (c.a. 0.023; Table 2).  
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Table 2: Mean values of immunity and growth parameters estimated during infection in sheep from lines selected 
on resistance (R) or susceptibility (S) to Haemonchus contortus. Parameters are defined in Table 1. Lines 
differences were tested based on unpaired t-test. 

 Zero immune energy cost 
(𝑒𝐼𝐸

 = 0 and 𝑒𝐼𝐹
 = 0) 

Optimal immune energy costs 
(𝑒𝐼𝐸

 = 0 and 𝑒𝐼𝐹
 = 0.0048) 

Parameter Line R  
(n = 21) 

Line S  
(n = 21) 

t  
(df = 40) 

p Line R  
(n = 21) 

Line S  
(n = 21) 

t  
(df = 40) 

p 

𝜑𝐼𝐸
 1.336 0.950 2.44 0.019 1.184 0.967 3.95 0.001 

𝜑𝐼𝐹
 -5.291 -7.369 4.56 < 0.001 -5.114 -7.294 4.74 < 0.001 

𝛽𝑃 0.0185 0.0154 1.4 0.17 0.0141 0.0143 -0.104 0.92 
a re-estimated during infection 

 

4.3  Predicted resilience trajectories to the infectious challenge    

Individual model fits corresponding to the energy costs estimates for parasite resistance identified 

through the optimisation process above were relatively good as shown with two representative 

individuals of each line (𝑁𝑅𝑆𝑆 = 13.9 and 14.6) (Fig. 6). The consequences of the positive energy costs 

for parasite resistance were observed in terms of a reduction of BW and BFT gains compared to the 

predicted trajectories if parasite resistance was costless (Fig.6).  

 

Figure 6: Predicted resilience trajectories for two representative sheep of lines selected for parasite resistance (A) 
or susceptibility (B) according to the energy cost assumed for parasite resistance. Points represent observed data, 
solid lines are model predictions for the optimum energy costs assumed (i.e. 𝑒𝐼𝐸

 = 0.01 and 𝑒𝐼𝐹
 = 0.0072), dashed 

lines are model predictions when no energy costs for parasite resistance are assumed (i.e. 𝑒𝐼𝐸
 = 0 and 𝑒𝐼𝐹

 = 0). 

FEC = fecal parasite egg count; HE = blood haematocrit; BFT = backfat thickness; BW = body weight.  

 

4.4 Trade-off between parasite resistance and fat deposition    

The immune energy costs and of the higher immune response in the R line compared to the S line 

could partly explain the difference observed between lines in terms of BFT during the infection (Fig. 

7A). This difference was associated with a relative energy allocation to immunity that was about three 
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times larger the R line compared to the S line on average (Fig. 7B). As a result, a trade-off was predicted 

between BFT gain and parasite resistance (Fig. 7C) as supported by the positive correlation between 

those traits (pearson r =  +0.40, t(40) = 2.80, p = 0.008).  

 

Figure 7: Average observed and predicted back fat thickness (BFT) (A), predicted energy allocation to immunity 
(B) and predicted BFT gain and maximum parasite fecal egg count (FEC) (C) during an infectious challenge with 
Haemonchus contortus  in sheep line selected on resistance (R) or susceptibility (S) to the parasite. Average model 
fit (solid line) within each sheep line are represented, together with observations (points = means; error bars = 
95% confidence interval) for BFT. Relative energy allocation to immunity was defined as the proportion of energy 
intake allocated to immunity against H. contortus. Predicted BFT gains were calculated between the start (day 0) 
and the end (day 35) of the infectious challenge. The solid line and the grey area in (C) represents the linear 
regression line (predicted BFT = 1.98 + 0.087 · predicted max FEC) with the prediction interval.   

 

4.5 Trade-offs and resilience trajectories under a supplementary nutritional challenge 

To explore the model sensitivity to different feeding conditions, individual resilience trajectories to 

infectious challenge were simulated for the same feed intake but assuming a range of different values 

for the feed energy content. For each individual the absolute energy allocation to immunity against H. 

contortus was assumed to be maintained across the different feeding conditions while the potential 

energy deficit or excess were managed through body lipid mobilisation or deposition, respectively. As 

a result, the trade-off between parasite resistance and fat deposition was stronger when energy intake 

decreased as shown by higher values of the correlations between the maximum FEC and BFT gain, and 

to a lesser extent between HE loss and BFT gain (Fig. 8). In contrast, the correlation between BW gain 

and maximum FEC or HE loss remained close to zero.   
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Figure 8: Environmental sensitivity of the correlations between two health traits and two growth traits calculated 
from the host-parasite model. Environmental variation was simulated through a variation of the energy content 
of the feed intake. Vertical dashed line indicates the feed energy content estimated in the experiment.  Individual 
traits were derived from simulations of the same infectious challenge as described in the experiment. Health traits 
included maximum fecal egg count (FECmax) and loss of blood haematocrit (HEloss). Growth traits included gains in 
back fat thickness (BFTgain) and in body weight (BWgain).  

The effect of a nutritional challenge on the predicted resilience trajectories is illustrated in Fig. 9 for 

the two representative individuals of each line previously reported (Fig. 6). The nutritional challenge 

corresponds to a reduction of the energy content of the diet of about 15% the level assumed in the 

experiment (from 7.7 to 6.5 MJ/kg of DM). The effect of this challenge was mainly observed as a 

reduced gain in BFT, whose absolute magnitude was on average not different between lines (- 0.85 

mm between the start and the end of infectious period). However as BFT gain was lower in the R line 

with the experimental diet (Figure 7A), the nutritional challenge was predicted to be relatively stronger 

on average in this line (- 44%) than in the S line (-33%). As indicated by the previous correlations (Fig, 

8), a negligible of the nutritional challenge on BW was predicted. This partly resulted from the different 

effects on the various components of BW. In Fig. 9, note that BW was slightly higher at the start of the 

infectious challenge as gut fill was predicted to be higher when the energy content decreases (see Eq. 

24). This higher gut fill was then compensated by the lower lipid mass. 
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Figure 9: Predicted resilience trajectories for two representative sheep of lines selected for parasite resistance (A) 
or susceptibility (B) according to the diet energy density. Points represent observed data, solid lines are model 
predictions for the assumed energy content of the experimental diet (7.7 MJ/kg of DM), red dashed lines are 
model predictions when a lower energy content is assumed (6.5 MJ/kg of DM). FEC = faecal parasite egg count; 
HE = blood haematocrit; BFT = backfat thickness; BW = body weight. Both scenarios were simulated assuming the 
optimum energy costs for parasite resistance. 

 

5 Discussion 

Although previous mechanistic models of gastro-intestinal parasite infection in sheep assumed a 

nutritional cost of parasite resistance (Vagenas et al., 2007b; Doeschl-Wilson et al., 2008; Laurenson 

et al., 2011; Saccareau et al., 2016), the magnitude of such cost remains hypothetical and challenging 

to estimate from real data. Studies in nutrition have focused on the nutritional costs of infection due 

for instance to host resources consumption by parasites and on the negative consequences on 

productive traits (e.g. Ceï et al., 2018). In terms of economic impacts on farm, the costs of parasite 

infections are also emphasized compared with the costs of parasite resistance (Mavrot et al., 2015). 

Yet the existence of parasite resistance costs is supported both by the theory (Sheldon and Verhulst, 

1996) and by experimental evidence (Lochmiller and Deerenberg, 2000; Greer, 2008). Those costs are 

not only important from a nutritional viewpoint but also from a genetic viewpoint as they may 

constrain the functional relationship between traits and thereby underlay unfavourable genetic 

correlations between parasite resistance and production traits (Bishop and Stear, 2003). Our study is 

to our knowledge the first attempt to quantify dynamically such resistance costs in the case of gastro-

intestinal parasite infection in sheep. 

Based on our model and on experimental data, the energy costs of resisting to H. contortus infection 

could be at the basis of a trade-off between parasite resistance and fat deposition in growing lambs. 

Although some data support a potential antagonism between parasite resistance and body growth 

(e.g. a positive correlation between FEC and BW; Mucha et al. (2022)), few have investigated the 

changes in body composition during parasite infection. In general, nutritional costs are assumed in 

terms of metabolisable protein (Bishop and Stear, 1997; Liu et al., 2005; Vagenas et al., 2007b) which 

should primarily lead to consequences on body muscle rather than body fat dynamics. However there 

is evidence for energy costs of parasite resistance in genetically resistant sheep (Liu et al., 2005).  Those 
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costs will be more likely revealed when feed energy is very limiting compared with feed protein, as 

was the case in our experiment. Still, repeating the same infection protocol than in our experiment but 

using different diets (i.e. various protein and energy contents) would be needed to go further into the 

nature of parasite resistance costs. 

Besides the uncertainty that arose from the single dataset that we used to calibrate our model, some 

model assumptions are important to remind to interpret the significance of the estimated parasite 

resistance costs. In particular, we assumed that host energy balance was fully buffered with body 

reserves. This may not necessarily occur as animals may also defend a certain level of body fat and 

therefore adjust their energy allocation for instance between protein growth and immunity. As 

assumed by Coop and Kyriazakis (1999) protein growth and immunity were given the higher priority 

compared with changes in body lipid in our model. Yet more complex allocation rules could be assumed 

(e.g. Sandberg et al., 2005), which may notably lead to different trade-off expressions according to the 

diet energy content (compared with our predictions in Fig. 8). Here our model results fit the predictions 

of the resource allocation theory (Doeschl-Wilson et al., 2009) and thus provide a first step towards a 

prediction tool that could be used in practice. Our model focuses on short infection challenge with a 

single parasite specie and under specific controlled indoor conditions. Further model developments 

are thus clearly needed to predict trade-offs in the context of parasite infections naturally occurring 

on farm pastures (e.g. multiple infections, other host sex or stages, costs of parasite infection). As it 

was presented here, the model represent a first tool to assist breeding strategies since the infection 

protocol that has been modelled here has proven to be effective to select genetically resistant rams 

(Aguerre et al., 2018).   

 

6 Conclusion 

This document outlines the scope, assumptions and methodology for a mechanistic resource 

allocation model of host-parasite infections in sheep. Resilience trajectories were generated for an 

infectious challenge under controlled conditions. Further the effect of a nutritional challenge 

superimposed to the infectious challenge could be explored by simulating resilience trajectories using 

a reduced energy content of the diet. The model has been calibrated with data generated in task 3.2 

of SMARTER in lambs of the parasite resistance Romane sheep lines. This allowed the estimation of 

a key unknown model parameter that underpins trade-offs generated by immune or nutritional 

challenges: the energy cost of parasite resistance. The study provided the first empirical evidence for 

a positive energy cost associated with host resistance to parasites. This energy cost can lead to a 

genetic trade-off between parasite resistance and fat deposition in lambs and may thus constrain 

breeding strategies in particular when feed energy is scarce.  

The estimation of this energy cost of parasite resistance allows model predictions of host response 

and resilience trajectories under different parasitic or nutritional challenges, as demonstrated in this 

study. 

To determine trade-off under nutitional challenge, a second resource allocation model has been 

developped in SMARTER. Data from the longevity goat experiment were used to infer mean 

trajectories for milk production and body weight. Links between the performance trajectories and 

the resilience of these animals to a short-term nutritional challenge have been explored and used, 

together with other literature data. Once it has been calibrated with those data, the goat allocation-

acquisition model (AQAL-Goat) can predict life-time trajectories of intake (DM and energy) and body 
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components, such as mass, fat, protein, and energy. This preliminary work is described in Appendix2. 

7 Deviations or delays 

N/A 

8 References 

Aguerre, S., P. Jacquiet, H. Brodier, J. P. Bournazel, C. Grisez, F. Prévot, L. Michot, F. Fidelle, J. M. Astruc, 
and C. R. Moreno. 2018. Resistance to gastrointestinal nematodes in dairy sheep: Genetic variability 
and relevance of artificial infection of nucleus rams to select for resistant ewes on farms. Veterinary 
Parasitology. 256:16–23. doi:10.1016/j.vetpar.2018.04.004. 

Beilharz, R. G., B. G. Luxford, and J. L. Wilkinson. 1993. Quantitative genetics and evolution: Is our 
understanding of genetics sufficient to explain evolution? Journal of Animal Breeding and Genetics. 
110:161–170. doi:10.1111/j.1439-0388.1993.tb00728.x. 

Bishop, S. C., and M. J. Stear. 1997. Modelling responses to selection for resistance to gastro-intestinal 
parasites in sheep. Animal Science. 469–478. 

Bishop, S. C., and M. J. Stear. 2003. Modeling of host genetics and resistance to infectious diseases: 
understanding and controlling nematode infections. Veterinary Parasitology. 115:147–166. 
doi:10.1016/S0304-4017(03)00204-8. 

Ceï, W., N. Salah, G. Alexandre, J. C. Bambou, and H. Archimède. 2018. Impact of energy and protein 
on the gastro-intestinal parasitism of small ruminants: A meta-analysis. Livestock Science. 212:34–44. 
doi:10.1016/j.livsci.2018.03.015. 

Colditz, I. G. 2007. Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol. 
0:071025012052001-??? doi:10.1111/j.1365-3024.2007.00964.x. 

Coop, R. L., and I. Kyriazakis. 1999. Nutrition–parasite interaction. Veterinary Parasitology. 84:187–
204. doi:10.1016/S0304-4017(99)00070-9. 

Dargie, J. D., and E. W. Allonby. 1975. Pathophysiology of single and challenge infections of 
Haemonchus contortus in Merino sheep: Studies on red cell kinetics and the “self-cure” phenomenon. 
International Journal for Parasitology. 5:147–157. doi:10.1016/0020-7519(75)90021-1. 

Doeschl-Wilson, A. B., W. Brindle, G. Emmans, and I. Kyriazakis. 2009. Unravelling the Relationship 
between Animal Growth and Immune Response during Micro-Parasitic Infections. S. Plaistow, editor. 
PLoS ONE. 4:e7508. doi:10.1371/journal.pone.0007508. 

Doeschl-Wilson, A. B., D. Vagenas, I. Kyriazakis, and S. C. Bishop. 2008. Exploring the assumptions 
underlying genetic variation in host nematode resistance (Open Access publication). Genet. Sel. Evol. 
40:241–264. doi:10.1051/gse:2008001. 

Emmans, G. C. 1997. A Method to Predict the Food Intake of Domestic Animals from Birth to Maturity 
as a Function of Time. Journal of Theoretical Biology. 186:189–199. 



  SMARTER – Deliverable D3.3 
 

 

S M A R T E R  -  H 2 0 2 0                                         P a g e  23 | 32 

 

Fenton, A., and S. E. Perkins. 2010. Applying predator-prey theory to modelling immune-mediated, 
within-host interspecific parasite interactions. Parasitology. 137:1027–1038. 
doi:10.1017/S0031182009991788. 

Greer, A. W. 2008. Trade-offs and benefits: implications of promoting a strong immunity to 
gastrointestinal parasites in sheep: Trade-offs and benefits of immunity. Parasite Immunology. 
30:123–132. doi:10.1111/j.1365-3024.2008.00998.x. 

Kahn, L. P., M. R. Knox, G. D. Gray, J. M. Lea, and S. W. Walkden-Brown. 2003. Enhancing immunity to 
nematode parasites in single-bearing Merino ewes through nutrition and genetic selection. Veterinary 
Parasitology. 112:211–225. doi:10.1016/S0304-4017(02)00438-7. 

Laurenson, Y. C. S. M., S. C. Bishop, and I. Kyriazakis. 2011. In silico exploration of the mechanisms that 
underlie parasite-induced anorexia in sheep. Br J Nutr. 106:1023–1039. 
doi:10.1017/S0007114511001371. 

Laurenson, Y. C. S. M., I. Kyriazakis, and S. C. Bishop. 2012. In silico exploration of the impact of pasture 
larvae contamination and anthelmintic treatment on genetic parameter estimates for parasite 
resistance in grazing sheep1. Journal of Animal Science. 90:2167–2180. doi:10.2527/jas.2011-4527. 

Liu, S. M., T. L. Smith, L. J. E. Karlsson, D. G. Palmer, and R. B. Besier. 2005. The costs for protein and 
energy requirements by nematode infection and resistance in Merino sheep. Livestock Production 
Science. 97:131–139. doi:10.1016/j.livprodsci.2005.03.007. 

Lochmiller, R. L., and C. Deerenberg. 2000. Trade-offs in evolutionary immunology: just what is the cost 
of immunity? Oikos. 88:87–98. doi:10.1034/j.1600-0706.2000.880110.x. 

Louie, K., A. Vlassoff, and A. Mackay. 2005. Nematode parasites of sheep: Extension of a simple model 
to include host variability. Parasitology. 130:437–446. doi:10.1017/S003118200400678X. 

Macfarlane, J. M., R. M. Lewis, G. C. Emmans, M. J. Young, and G. Simm. 2006. Predicting carcass 
composition of terminal sire sheep using X-ray computed tomography. Anim. Sci. 82:289–300. 
doi:10.1079/ASC200647. 

Mavrot, F., H. Hertzberg, and P. Torgerson. 2015. Effect of gastro-intestinal nematode infection on 
sheep performance: a systematic review and meta-analysis. Parasites Vectors. 8:557. 
doi:10.1186/s13071-015-1164-z. 

Mucha, S., F. Tortereau, A. Doeschl-Wilson, R. Rupp, and J. Conington. 2022. Animal Board Invited 
Review: Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep. 
animal. 16:100456. doi:10.1016/j.animal.2022.100456. 

Rauw, W. M., ed. 2009. Resource allocation theory applied to farm animal production. 1st ed. CABI, 
UK. Available from: http://www.cabidigitallibrary.org/doi/book/10.1079/9781845933944.0000 

Saccareau, M., C. R. Moreno, I. Kyriazakis, R. Faivre, and S. C. Bishop. 2016. Modelling gastrointestinal 
parasitism infection in a sheep flock over two reproductive seasons: in silico exploration and sensitivity 
analysis. Parasitology. 143:1509–1531. doi:10.1017/S0031182016000871. 



  SMARTER – Deliverable D3.3 
 

 

S M A R T E R  -  H 2 0 2 0                                         P a g e  24 | 32 

 

Saccareau, M., G. Sallé, C. Robert-Granié, T. Duchemin, P. Jacquiet, A. Blanchard, J. Cabaret, and C. R. 
Moreno. 2017. Meta-analysis of the parasitic phase traits of Haemonchus contortus infection in sheep. 
Parasites Vectors. 10:201. doi:10.1186/s13071-017-2131-7. 

Sallé, G., P. Jacquiet, L. Gruner, J. Cortet, C. Sauvé, F. Prévot, C. Grisez, J.-P. Bergeaud, L. Schibler, A. 
Tircazes, D. François, C. Pery, F. Bouvier, J.-C. Thouly, J.-C. Brunel, A. Legarra, J. M. Elsen, J. Bouix, R. 
Rupp, and C. Moreno-Romieux. 2012. A genome scan for QTL affecting resistance to Haemonchus 
contortus in sheep. Journal of Animal Science. 90:4690–4705. doi:10.2527/jas2012-5121. 

Sandberg, F. B., G. C. Emmans, and I. Kyriazakis. 2005. Partitioning of limiting protein and energy in the 
growing pig: description of the problem, possible rules and their qualitative evaluation. Br J Nutr. 
93:205–212. doi:10.1079/BJN20041321. 

Sheldon, B. C., and S. Verhulst. 1996. Ecological immunology: costly parasite defences and trade-offs 
in evolutionary ecology. Trends in Ecology & Evolution. 11:317–321. doi:10.1016/0169-
5347(96)10039-2. 

Smith, G. 1988. The population biology of the parasitic stages of Haemonchus contortus. Parasitology. 
96:185–195. doi:10.1017/S0031182000081750. 

Stear, M. J., S. C. Bishop, B. A. Mallard, and H. Raadsma. 2001. The sustainability, feasibility and 
desirability of breeding livestock for disease resistance. Research in Veterinary Science. 71:1–7. 
doi:10.1053/rvsc.2001.0496. 

Vagenas, D., S. C. Bishop, and I. Kyriazakis. 2007a. A model to account for the consequences of host 
nutrition on the outcome of gastrointestinal parasitism in sheep: model evaluation. Parasitology. 
134:1279–1289. doi:10.1017/S0031182007002624. 

Vagenas, D., S. C. Bishop, and I. Kyriazakis. 2007b. A model to account for the consequences of host 
nutrition on the outcome of gastrointestinal parasitism in sheep: logic and concepts. Parasitology. 
134:1263–1277. doi:10.1017/S0031182007002570. 

Vanimisetti, H. B., S. L. Andrew, A. M. Zajac, and D. R. Notter. 2004. Inheritance of fecal egg count and 
packed cell volume and their relationship with production traits in sheep infected with Haemonchus 
contortus1. Journal of Animal Science. 82:1602–1611. doi:10.2527/2004.8261602x. 

Wellock, I. J., G. C. Emmans, and I. Kyriazakis. 2004. Modelling the effects of stressors on the 
performance of poulations of pigs. Jounal of Animal Science. 82:2442–2450. 

 

 

 

  



  SMARTER – Deliverable D3.3 
 

 

S M A R T E R  -  H 2 0 2 0                                         P a g e  25 | 32 

 

9 Appendix1: Source code for the sheep allocation model 

This is the R code of the infectious model presented in deliverable D3.3 of the SMARTER project. The 
model was developed with R version 4.2.2 (2022-10-31 ucrt) – “Innocent and Trusting”. 

The following R packages need to be uploaded first: 
 
library(deSolve); library(reshape2); library(minpack.lm) 

Three components are needed to run a simulation: 

• The model function 

• The default parameters 

• The initial values 

•  

Model function “InfGrow_model” 

############################################################# 
################ Infection model function  ################## 
############################################################# 
InfGrow_model <- function(t, state, parameters){ 
  # t = time 
  # state = initial values of state variable 
  # parameters = list of constant values used in the model 
   
  with(as.list(c(state, parameters)),{ 
   
  # Functional response "funct_rep" later used in the model  
    funct_rep <- function(x, x0.5, A = 1, n = 3, inc = TRUE){  
      # A = asymptote, n = shape, that is by default 3 (sigmoid) and increasing wi
th input x) 
      if(inc==TRUE) x0 <- (x0.5/x)^n else x0 <- (x/x0.5)^n 
      return(A/(x0 + 1))} 
     
  # Settings of time delays 
    # muLI: mortality rate of ingested larvae before reaching the establishment si
te 
    muLI <- -log(E0)/thauLI 
    # thauLI = time delay from ingestion to establishment site 
    tlag1 <- t - thauLI  
    if (tlag1 <= 0) kLE2 <- 0 else kLE2 <- kLE 
    tlag2 <- t - thauLE  
    #  thauLE = time delay from established larvae LE to adult male (Am) or female 
(Af_nl) (i.e. length of L4 stage) 
    if (tlag2 <= 0) kA2 <- 0 else kA2 <- kA 
   
  # Food intake and Mass-specific food intake ("Food_intake_prop") 
    Food_intake <- predict(interpol, t)$y  
    # Food intake is obtained from 'interpol' function which gives an estimate for 
each time t 
    Food_intake <- Food_intake*(Food_intake>0)  
    # Negative estimate replaced by 0 
    Food_intake_prop <- as.numeric(c(interpol2$coefficients)%*%c(1,t))  
    # Food intake as a proportion to body mass over the period (to calculate gut f
ill) 
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  # Immunity effect on parasites (effect of immune components I_E and I_F) 
    # E_I is reduction in LI establishment due to immune response I_E (E_I togethe
r with E gives establishment) 
    E_I <- funct_rep(x = I_E, x0.5 = I_E0.5, inc = FALSE) 
    # kF_I is reduction in Af development due to immune response I_E (kF_I togethe
r with kF0 gives transition rate from Af_nl to Af) 
    kF_I <- funct_rep(x = I_F, x0.5 = I_F0.5, inc = FALSE) 
   
  # Parasite transitions between stages LI, LE, Am, Af_nl, Af 
    # dLI/dt (LI = ingested larvae) 
    dLI <- - muLI*LI - kLE2*LI 
    # dLE/dt (LE = larvae established) 
    dLE <- E_I*kLE2*LI - muLE*LE - kA2*LE 
    # dAm/dt (Am = adult males) 
    dAm <-  kA2*sex_ratio*LE - muA*Am 
    # dAf_nl/dt (Af_nl = adult females non-laying) 
    dAf_nl <-  kA2*(1 - sex_ratio)*LE - muA*Af_nl - kF0*kF_I*Af_nl 
    # dAf/dt (Af = adult female laying) 
    dAf <-  kF0*kF_I*Af_nl - muA*Af 
   
  # Immune response to parasites 
    # dI_E/dt (I_E = immunity against establishment) 
    dI_E <-  betaI*(I_E0 - I_E) + rhoI_E*I_E*funct_rep(LI, LI0.5) 
    # dI_F/dt (I_F = immunity against adult female laying eggs) 
    dI_F <- betaI*(I_F0 - I_F) + rhoI_F*(I_E - I_E0)*LE 
     
  # Sheep growth rates 
    # Protein growth 
    dProtein <- Protein*(B_Protein/Protein_m^beta_Protein)*log(Protein_m/Protein) 
    # Wool growth 
    dWool <- K_Wool*Protein 
    # Energy balance (= energy available for lipid growth) 
    EB <- Food_intake*DM*EEC - (dProtein + dWool)*bp - e_maint*(Protein/Protein_m^
beta_Protein) - (e_IE*I_E + e_IF*I_F) 
    # Lipid growth 
    dLipid <- (EB/bl)*(EB>=0) + (EB/blc)*(EB<0) 
 
  # Others body components (varying proportionally with Protein mass) 
    Ash <- AshtoProtein_ratio*Protein 
    Water <- WatertoProtein_ratio*Protein_m*(Protein/Protein_m)^beta_Water 
    # Mass-specific gut fill 
    Gut_fill_prop <-  Food_intake_prop*(11 - ((7*EEC)/15)) 
    # Empty body weight 
    EBW <- Protein + Lipid + Ash + Water 
   
  # OUTPUTS 
    # Body weight 
    BW <- (EBW + Wool)/(1 - Gut_fill_prop) 
    # Back fat thickness  
    fat_thick <- if(Lipid>0) exp((log(Lipid) - bLipid_0 - bLipid_EBW*log(EBW))/bLi
pid_FT) else 0 
    # Feces 
    Feces <- (1 - dDM)*(Food_intake)*1000 
     
    # Observable host effects 
    # dHE/dt (HE = hematocrit) 
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    dHE <- betaHE*(HE0 - HE) - kHE_LE*LE - kHE_Anf*(Am + Af_nl) - kHE_Af*Af 
    # Egg outputs (FEC = fecal egg count, per gram of feces) 
    FEC <- FEC_i*Af/Feces # FEC_i = average daily production of eggs per adult fem
ale 
   
  # (!!order of derivatives needs to be the same as the order state variables (sta
te)!!) 
  list(c(dLI, dLE, dAm, dAf_nl, dAf, dI_E, dI_F, dHE, dProtein, dWool, dLipid),  
       FEC = as.numeric(FEC), E_I = as.numeric(E_I), kF_I = as.numeric(kF_I), 
       EB = as.numeric(EB), Food_intake = as.numeric(Food_intake), EBW = as.numeri
c(EBW),  
       BW = as.numeric(BW), fat_thick = as.numeric(fat_thick)) 
  }) # end with(as.list ... 
} 

Default parameters 

Initial values have to specified for the different state variables. 

### DEFAULT PARAMETER ################# 
parmsInfGrow_default <- list( 
  E0 = 0.7, thauLI = 2, kLE = 2, thauLE = 15, kA = 0.62, kF0 = 0.11, muLE = 0.01, 
muA = 0.015, sex_ratio = 0.5, FEC_i = 7000, 
  betaHE = 0.16, HE0 = 35, kHE_LE = 0.00015, kHE_Anf = 0.0005, kHE_Af = 0.0011,  
  betaI = 0.05, rhoI_E = 0, rhoI_F = 0, I_E0.5 = 5, I_F0.5 = 5, LI0.5 = 3000, LE0.
5 = 1500, I_E0 = 1e-6, I_F0 = 0, e_IE = 0, e_IF = 0, 
  beta_Protein = 0.27, AshtoProtein_ratio = 0.211, WatertoProtein_ratio = 3.25, be
ta_Water = 0.815, 
  bl = 50, blc = 39.6, bp = 56, e_maint = 1.63, DM = 0.888, EEC = 7.7, dDM = 0.76, 
  bLipid_0 = -4.0120, bLipid_FT = 0.5597,  bLipid_EBW = 1.523453, 
  B_Protein = 0.023, Protein_m = 6.76, Lipid_m = 14, K_Wool = 0.001) 

Initial values 

Initial values have to specified for the different state variables. NB : some initial values that are also 
used during the simulations are specified in the default parameters. 

cinit <- c(LI = 10000, LE = 0, Am = 0, Af_nl = 0, Af = 0,  
         I_E = parmsInfGrow_default$I_E0, I_F = parmsInfGrow_default$I_F0,  
         HE = parmsInfGrow_default$HE0, Protein = 4.81, Wool = 0.77, Lipid = 7.67) 

Run a simulation 

To run a simulation we define an hypothetical scenario with a constant food intake of 1.9kg per day 
and equivalent to 30g of food intake per kg of body weight. Real-time series can be used instead and 
then smoothed using the ‘smooth.spline’ function or linear regression. 

datadef <- data.frame(time = 1:35, Food_intake = 1.9, Food_intake_prop = 0.03) 
interpol <- with(datadef, smooth.spline(time, Food_intake, df = 7))  
interpol2 <- lm(Food_intake_prop ~ time, datadef) 

Simulation is run with the ‘ode’ function of deSolve and results are stored in the matrix ‘out’. 

out <- ode(y = cinit, times = seq(0, 35, 0.1), func = InfGrow_model, parms = parms
InfGrow_default) 

Visualization of outputs. 
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head(out) 

##      time        LI LE Am Af_nl Af   I_E I_F HE  Protein      Wool    Lipid FEC 
## [1,]  0.0 10000.000  0  0     0  0 1e-06   0 35 4.810000 0.7700000 7.670000   0 
## [2,]  0.1  9823.240  0  0     0  0 1e-06   0 35 4.812246 0.7704811 7.683566   0 
## [3,]  0.2  9649.608  0  0     0  0 1e-06   0 35 4.814491 0.7709624 7.697129   0 
## [4,]  0.3  9479.038  0  0     0  0 1e-06   0 35 4.816733 0.7714440 7.710691   0 
## [5,]  0.4  9311.491  0  0     0  0 1e-06   0 35 4.818973 0.7719258 7.724249   0 
## [6,]  0.5  9146.904  0  0     0  0 1e-06   0 35 4.821212 0.7724078 7.737806   0 
##      E_I kF_I       EB Food_intake      EBW       BW fat_thick 
## [1,]   1    1 6.783518         1.9 30.14328 39.74451  4.652567 
## [2,]   1    1 6.782346         1.9 30.16590 39.77422  4.657759 
## [3,]   1    1 6.781176         1.9 30.18852 39.80391  4.662940 
## [4,]   1    1 6.780008         1.9 30.21112 39.83358  4.668110 
## [5,]   1    1 6.778842         1.9 30.23371 39.86324  4.673268 
## [6,]   1    1 6.777677         1.9 30.25628 39.89289  4.678417 

tail(out) 

##        time           LI         LE       Am    Af_nl       Af   I_E I_F 
## [346,] 34.5 1.248194e-27 0.02619599 2133.022 304.0864 1828.935 1e-06   0 
## [347,] 34.6 1.003873e-27 0.02459655 2129.825 300.3098 1829.515 1e-06   0 
## [348,] 34.7 8.073752e-28 0.02309477 2126.634 296.5800 1830.054 1e-06   0 
## [349,] 34.8 6.493399e-28 0.02168469 2123.447 292.8965 1830.550 1e-06   0 
## [350,] 34.9 5.222383e-28 0.02036069 2120.265 289.2588 1831.006 1e-06   0 
## [351,] 35.0 4.200156e-28 0.01911754 2117.087 285.6661 1831.421 1e-06   0 
##              HE  Protein      Wool    Lipid      FEC E_I kF_I       EB 
## [346,] 15.37562 5.468992 0.9479650 12.23359 28075.76   1    1 6.472879 
## [347,] 15.36678 5.470582 0.9485120 12.24653 28084.67   1    1 6.472206 
## [348,] 15.35837 5.472171 0.9490591 12.25948 28092.93   1    1 6.471535 
## [349,] 15.35038 5.473758 0.9496064 12.27242 28100.55   1    1 6.470864 
## [350,] 15.34280 5.475343 0.9501539 12.28536 28107.55   1    1 6.470195 
## [351,] 15.33564 5.476927 0.9507015 12.29830 28113.92   1    1 6.469526 
##        Food_intake      EBW       BW fat_thick 
## [346,]         1.9 37.34147 49.22787  5.981572 
## [347,]         1.9 37.36073 49.25333  5.984484 
## [348,]         1.9 37.37997 49.27877  5.987392 
## [349,]         1.9 37.39920 49.30420  5.990296 
## [350,]         1.9 37.41843 49.32963  5.993196 
## [351,]         1.9 37.43765 49.35504  5.996093 
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10 Appendix2: Report for the AQAL goat allocation model   

AQAL is a mechanistic model, primarily developed for dairy cows, that simulates trajectories 

of phenotypes throughout lifetime, depending on trajectories of resource acquisition and allocation, 

driven by four genetic-scaling parameters, and depending on the nutritional environment (quantity 

and quality of feed resources) (Puillet et al., 2016). Because the model depends on trajectories of 

resource acquisition and allocation, and not on complex biological processes, we aimed to convert the 

already calibrated AQAL cow into a AQAL goat version using goats ‘life functions trajectories available 

in the literature. For this, as a first step, we are checking and when necessary, adapting the equations 

that describe the trajectories of energy acquisition and allocation into “products” (structural mass, 

labile mass, body mass, soma, and maintenance) for a goat female non-lactating and non-pregnant. As 

soon as we can simulate a female non-lactating and non-pregnant growth trajectory, we start exploring 

the parameters related to describe the trajectories of energy and products related to reproduction and 

lactation. For the reproductive phase we have data from two research stations, Grignon and Bourges.  

At both stations we have animals from the divergent lines for longevity. For the first part calibrating 

growth trajectories, we are using papers that have measured and described the trajectories of intake 

(DM and energy) and body components (mass, fat, protein, and energy) and parameters that convert 

this energy allocated as products into metabolizable and net energy (Castagnino et al., 2015; Härter et 

al., 2016; Härter et al., 2017; Souza et al., 2017; Noziere et al., 2018; Almeida et al., 2019; Souza et al., 

2020). We are also using real data from the INRAE farm, in Grignon to visually drive all the updates in 

the model. 

Until this moment, we have updated the parameters that drive basal acquisition (kg DM/d; 

from 7 to 1.5 kg/d), energy transfer rate from soma to growth (from 0.0024 to 0.004), efficiency of 

maintenance (NE/ME; from 0.65 to 0.63), basal acquisition at birth (kg DM/d; from 2 to 0.2), parameter 

of basal acquisition logistic function (from 0.012 to 0.02), body mass at birth (kg; from 42.8 to 3), and 

fixed cost of maintenance (net energy kcal/kg EBW0.75; from 93 kcal/kg BW0.75 to 63.6 kcal/kg EBW0.75). 

After the updates, we already can simulate the trajectories of basal DM acquisition (Figure 1), close to 

what is observed in the real data of the INRAE farm, predicted using the equation proposed by Almeida 

et al. (2019). We also tried to simulated BW and BCE and they have been overpredicted by the model 

(Figure 2). So, at this step, we checking the parameters related to structural mass (flow of energy, 

efficiencies, body compositions, and energy allocated according to body composition using the 

equations proposed by (Souza et al., 2017; Souza et al., 2020)). 
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Figure 1: Dry matter intake (kg/d) simulated using the ADAL model (red line) and predicted using the 

equation DMI (g/d) = 98.3BW0.681, in which BW is from real data recoded at the INRAE farm (black dots). 

 

 

Figure 2: Total body weight (kg; grey line), empty body weight (kg; yellow line), reserves (kg; red line), 

and structural mass (kg; blue line) simulated by the AQAL model and body weight observed in the 

INRAE farm (black dots). 
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