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1 Summary 

The challenge facing small ruminant populations worldwide is to increase productivity while 

maintaining genetic diversity and their ability to adapt to climate change. The objective of the 

WP4 on Smarter project was to analyse the genetic diversity and variability levels of 

underutilised small ruminant breeds as well as the local adaptation. 

Research on the genetic diversity of the local worldwide underutilised sheep and goat provide 

an understanding of their population structure, admixture and inbreeding levels, and the 

relationships among them. Likewise, it is important to better understand which forces guided 

the formation of each breed starting from their origin. Demographic events occurred in the 

past (also recent), natural and artificial selection are the factors that play a key role in shaping 

their genome. 

In addition, local adaptation studies can be used to identify causal factors underlying breed 

adaptation to specific environmental conditions and have a potential to predict future loss of 

adaptive genomic variation under climate change. In particular, the adaptation to 

environmental conditions lead to the selection of alleles that are maintained over the time 

and that allow the populations to thrive in their habitat and in challenging environmental 

conditions. The underutilised breeds constitute a reservoir of genetic variation in comparison 

with the commercial breeds and a useful source of specific alleles and variants that can be 

relevant in specific breeding objectives. 

To do so, we used different approaches: 

 1. We explored the population structure and the demography in the sheep and goat datasets 

by using: 

- Principal Components Analysis, highlighting the contribution of the SMARTER 

project and to fill the gap in the analysis of worldwide local breeds 

-  A distance-based method to explore the relationship among breeds 

- ADMIXTURE and individual ancestry components for the foreground data 

- Runs of Homozygosity and inbreeding levels 

2. We explored the local adaptation using a LFFM algorithm 

3. We addressed the problem of the missingness (when missing SNP-genotype data) through 

imputation 

4. We analysed a case-study (commercial vs local breeds) for the detection of Heterozygosity-

rich regions, and we performed  several tests for improving the parameters setting for both 

ROH and HRR. 
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The relationships between breeds represented by a Neighbour-Net graph for sheep and goat 

highlighted that both species are clustering according to the geographical origin even though 

some groups present an inner separation. The analysis of individual ancestry in the new 

genotyped goat breeds revealed an introgression from Alpine breed in the genome of Fossée, 

a Nordic origin of the Swedish breed and the influence of the Eghoria to Skopelos population 

that supports previous studies.  For the new genotyped sheep breeds, the same analysis 

supports previous relationships among groups already detected by the Network graph. By 

investigating the relationship between genotype and environment in some underutilised local 

breeds from South America and Africa countries, we identifies genes that play a role in 

adaptation to altitude and temperature, and we inferred that this approach could help to 

provide recommendations on favourable genotypes for specific climatic and environmental 

conditions. 

These results provide useful information about the genetic status of underutilised european 

breeds and on the mechanisms that regulate the evolution of genes and traits of interest. This 

contributes to the planning of effective breeding programs and to more sustainable use of the 

AnGR.  

2 Introduction 

Centuries of intensive breeding selection programs aimed to satisfy the increasing demand of 

livestock products (milk, meat, wool) at global level contributed to the formation of new 

breeds (often called “synthetic breeds”) by crossbreeding local ecotypes with the more 

productive ones. In the last decades, several studies on local adaptation were made to better 

understand the mechanisms of action of the genes involved in this process. Small ruminant 

traditional breeds are valuable animal resources for small-scale farmers above all in marginal 

areas and in developing countries, sustaining the local production systems. These breeds have 

evolved to adapt to production needs and agro-ecological conditions, maintaining adaptive 

traits shaped by natural selection over the time. In addition, local breeds have an important 

value as a source of genetic variation for commercial breeds. Despite their importance, most 

sheep and goat breeds are still uncharacterized and their response to natural selection is still 

unresolved. Genetic characterization is key for the conservation of livestock and to analyse 

the genetic diversity provides an understanding of the relationships that exist among breeds 

as well as the within-breed differentiation.  Uncovering their genetic makeup shaped by 

selection pressures and demographic events can help to identify genes and markers, to 

determine their functions and to assist in identifying traits of economic importance. The 

objective of this task was to analyse the genetic diversity and variability levels of underutilised 

small ruminant breeds (sheep and goat). The findings revealed by these results can also 

provide a basis for future studies focused on the associations between phenotype and 

genotype in response to the environment. Finally, to assess their contribution for long-term 
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food security in changing environments is crucial for making more sustainable, productive and 

resilient livestock systems. 

 

3 Genetic diversity and demographic analyses 

The datasets included 285 breeds for sheep and 145 breeds for goats with a worldwide 

distribution. Both include transboundary/selected breeds (background data) and 

underutilised breeds that are the target of this task (foreground data). The SNP data were 

remapped against OAR3 and ARS1.2 assemblies and the quality control was performed using 

PLINK v1.9 (Chang et al 2015), following the FAO guidelines for the genomic characterisation 

of animal genetic resources (Ajmone-Marsan et al 2023). In order to balance the number of 

animals per breed/population, we used BITE (Milanesi et al., 2017) with a threshold of 30 

individuals and excluding the breeds that have less than 5 individuals. PGDSpider v2.0.4.0 

(Lischer et al., 2012) was used to convert the file in a specific format suitable for the different 

programs. Some of the results that follow consist of analyses of foreground dataset for both 

species. Results shown here are relative to subset including foreground data (representing 

mainly underutilised breeds) and other background breeds (mostly commercial breeds) as a 

base of comparison. In details, the goat subset included the following as foreground data (5 

breeds): Eghoria (EGH) and Skopelos (SKO) - Greece, Fossés (FSS) and Provencale (PVC) – 

France, Landrace, (LNR_SE) - Sweden. For comparison we included: French Alpine (ALP_FR), 

Italian Alpine (ALP_IT), Swiss Alpine (ALP_CH), French Saanen (SAA_FR), Italian Saanen 

(SAA_IT), Swiss Saanen (SAA_CH), French Angora (ANG_FR), Swiss Boer BOE_CH). Total of (13 

breeds/populations). For the sheep foreground data (29 breeds): Boutsko (BOU), Chios (CHI), 

Frizarta (FRZ), Mytilini (MYT), Pelagonia (PEL) – Greece; Manech Tête Noire (MTN), Bizet (BIZ), 

Rouge du Roussillon (RDR), Solognote (SOL) – France; Castellana (CAS), Assaf (ASF), Churra 

(CHU), Ojalada (OJA) – Spain; Bábolna Tetra (BAT), Tsigai (TSI), Dorper (DRP), Hortobágy Racka 

(HRR), White Dorper (WDR) – Hungary; Rusty Tsigai (RST), Turcana (TRC) – Romania; Creole 

(CRL), Corriedale (CRR) – Uruguay. Île de France (IDF) - France and Hungary; Suffolk (SUF) - 

France and Hungary; Merino (MER) – Hungary and Uruguay; Texel (TEX) – Uruguay and France. 

The breed codes that we used in the analyses are indicated in brackets.  

The distance matrices were calculated with Arlequin 3.5 (Excoffier and Lischer 2010), the 

population structure (Principal Components Analysis – PCA) and the individual ancestry with 

SNPRelate 4.1.2 (Zheng, et al 2012) and ADMIXTURE 1.3 (Alexander et al 2009), the 

demography (Runs of Homozygosity detection) with DetectRUNS 0.9.6 (Biscarini et al 2018) 

using the consecutive method. The Neighbour-Net were calculated and drawn with SplitsTree 

v4.14.2 (Huson 1998).  

3.1. Population structure of the whole datasets 

The PCA analyses were performed on the whole dataset, in order to highlight the contribution of the 

partners of Smarter and the achievement of the objective.  
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Figure 1 Principal Component Analysis for the goat dataset. The foreground data are labelled in 

different colours and the background data are in grey.  

 

Figure 2 Principal Component Analysis for the sheep dataset. The foreground data are labelled in 

different colours and the background data are in grey.  
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3.2. Relationship between breeds using the whole datasets 

 

The relationships between all the breeds were analysed using the Reynolds’ distance matrix and a 

Neighbour-Net method as shown in Figure 3 (goat) and 4 (sheep) below. 

 

 

 

 

Figure 3 NeighbourNet analysis displaying the relationship and distances among the goat breeds. The 

red dotted lines indicate that the branch is much longer, and it has been cut for a better visualisation. 

 

ICL 

LGW 

 

 



 

  SMARTER – Deliverable D4.2 

 
 

SMARTER - H2020                                           Page 7 | 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a. NeighbourNet analysis displaying the relationship and distances among the goat breeds. The 

red dotted lines indicate that the branch is much longer, and it has been cut for a better visualisation. 

In b, the zoomed bottom part of the graph. 
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In the goat network graph (Figure 3), we can observe a clear subdivision of the breeds according to the 

geographical origin. The transboundary breeds such as Angora (light orange) and Boer (yellow) are also 

clustering all together. More in detail, for the African continent (green curve, different shades) there 

are three groups: north-west (green), south-east (dark green) and Madagascar (light green). The 

European counterpart is included in the blue curve, with a more internal partition per country (Italian, 

French breeds closer to the Alpine and Saanen, followed by the Spanish one. The Scandinavian breeds 

(Northern Europe) form a unique branch very close to the Irish breeds (Western Europe). The Pakistani 

ones are grouping inside the red curve. 

The NeighbourNet for sheep is more complex and a less clear division is evident. The few remarkable 

observations are that i) the Chinese breed are well distinct and separate group -in red; ii) the Western 

European group (Ireland and the British Isles- mainly Wales) are close to the Scandinavian ones – green 

curve, Scandinavian to the left and British Isles to the right of the dotted green line;  iii) the Greek 

breeds are all together with some breed from The Eastern Europe -in yellow- (Hungry, Romania, 

Albania, etc.) except the synthetic breed Frizarta (indicated by a star) that is included in the same 

branch of the source populations (East Friesian white and brown) and a bit more distant from Assaf 

and Awassi (the last one a fat-tail-type). Assaf is a crossbreed between Awassi and East Friesian). The 

European counterpart (light blue curve) is also forming a unique big group with some internal 

subdivision per country.  
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3.3 Individual ancestry components  

Figure 5 ADMIXTURE analysis for the goat subset. The value of K ranged from 2 to 15, with the most 

probable K = 11 (as detected by cross-validation method). 
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Figure 6 ADMIXTURE analysis for the sheep subset. The value ok K ranged from 2 to 31, with the most 

probable K = 28 (as detected by cross-validation method). 

For the analysis of genetic components in the goat subgroup, we can observe a greater contribution 

from Alpine breed to the French Fossée, while the genetic background of the Swedish landrace 

suggests a different origin. The Greek breeds are distinct from each other but with some introgression 

from Eghoria to Skopelos population, as already detailed in Michailidou et al (2019). For the sheep 

subgroup, the ADMIXTURE analysis supports the previous relationship among groups already detected 

by the Network graph. In particular, we observe a common genetic component between the Spanish 

breeds and the Greek one together with some Hungarian breeds until K=12. In Frizarta we retrieve a 

background similar to the other Greek breeds but with a contribution from Assaf (linked to the origin 

of this crossbred population). Some French breeds look well genetically characterised (e.g. Solognote 

and Bizet) and the Uruguayan Creole clearly divided in two subpopulations, of which the smallest one 

showed an introgression with the Spanish Ojalada. 



 

  SMARTER – Deliverable D4.2 

 
 

SMARTER - H2020                                           Page 11 | 29 

 

3.4. Analysis of demography through the Runs Of Homozygosity (ROH) 

A general overview on the demography can be done through the detection, distribution and study of 

homozygous long stretches. As we can see from the distribution of ROH per class of length (Figure 7), 

the goat breeds Provencale and the Greek Eghoria have the longest segments (>16Mb), which suggests 

more likely to be the result of recent inbreeding. This last finding is supported by previous results 

(Michailidou et al 2019), where the Eghoria breed is more inbred in comparison with Skopelos.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Whole genome distribution of Runs of Homozygosity for the goat subset (foreground data). 

We included here the French Alpine and Saanen as comparison. 

Looking at the sheep subset, Boutsko (Greece), Sufflok (Hungary) and Tsigai (Hungary) are the breeds 

with a slightly highest number of ROH segments that fall in the last class of length (Figure 8). All the 

breeds showed an increased number of homozygous stretches that are included in the 2-4 Mb-class.  

 

 



 

  SMARTER – Deliverable D4.2 

 
 

SMARTER - H2020                                           Page 12 | 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Whole genome distribution of Runs of Homozygosity for the sheep subset (foreground data).  
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4 Landscape genomics for local adaptation in underutilised sheep 

breeds 

Small ruminants are an important source of livelihood for thousands of rural communities 

worldwide, playing a key role in local economies of both developing countries and the Western 

world. Local sheep breeds are ecoregional and genetically diverse (Wanjala et al., 2023) 

because, over time, natural and artificial selection has shaped their genome with morphological 

(Whannou et al 2021), behavioural (Dwyer and Lawrence, 2005; McManus et al., 2020) and 

physiological (Collier et al., 2019) changes to suit different breeding objectives. Therefore, the 

small ruminants provide a valuable model for identifying the genetic pathways and mechanisms 

that drive adaptations. Landscape genomics can help to understand the relationship between 

genetic architecture and environmental variables, as well as provide information on the 

evolutionary history of a species at different spatial scales. Thus, we aimed to investigate 

regions of the genome that may be associated with environmental adaptation.  

- Genotype Dataset 

The dataset included samples from sheep creole populations from Europe (n= 111), Asian 

(n=58), Africa (n=12) and America (n=8)) and belonging to the SMARTER project (Table 1), 

and populations from Brazil (n=1) and Colombia (n=8) from a private dataset. A total of 6519 

animals from 189 populations were included in the analysis. The populations were genotyped 

with the OvineSNP50, Ovine HD BeadChip (Illumina Inc., USA) or Affymetrix Axiom. A 

common map was created using the Ovine SNP50 BeadChip coordinates of SNPs on the OAR 

v3.1 reference genome assembly. After the merge with the SNP50 data, we obtained 40,455 

genotypes. Genotype quality control was performed using PLINK v1.9 and pruned for Linkage 

Disequilibrium (indep-pairwise: 50, 5, 0.2) and following filtering thresholds: (i) SNP call rate 

≤ 95%; (ii) SNP minor allele frequency (MAF) ≤ 1%; (iii) animals displaying ≥ 5% of missing 

genotypes. 

 

Continent Country Breeds Animals 

Africa Algeria Barbarine, Hamra,  

Tazegzawth 

17 

Central African 

Republic 

Sidaoun 14 

Congo Sidaoun 6 

Ethiopia EthiopianMenz 34 

Kenya Hamra,  Red Maasai 45 

South Africa NamaquaAfrikaner, 

RonderibAfrikaner 

29 

South Sudan Sidaoun 13 
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Uganda Hamra 10 

America Barbados Barbados BlackBelly 24 

Brazil Morada Nova, Santa Ines 69 

Colombia Brazilian Creole 23 

Jamaica StElizabeth 10 

United States GulfCoastNative 94 

Uruguay Creole 203 

Asia Bangladesh BangladeshiBGE, 

BangladeshiGarole 

48 

China Argali, Lop, Kirghiz, Celei 

black, Diqing, Guangling 

fat-tail, Guide Black Fur, 

Hanzhong, Hulun Buir, 

Jingzhong, Lanping 

Black-bone, Lanzhou 

Large-tailed, Luzhong 

Mountain, Minxian Black 

Fur, Ninglang Black, 

Shiping Gray, Taihang 

Fur, Tan, Tashkurgan, 

Tengchong, Tong, Turfan 

Black, Ujimqin, Wuranke, 

Yuxi Fat-tailed, Zhaotong, 

Bashbay, Sunite, 

Changthangi, 

Bayinbuluke, Altay, 

Duolang, Kazakh, Sishui 

Fur, Small Tailed Han, 

Large Tailed Han, Hu, 

Wadi, Tibetan 

2093 

India Deccani, indianGarole 50 

Indonesia Garut, Sumatra 46 

Iran Iranian sheep, Iranian 

mouflon, Lori-Bakhtiari, 

Zel, Moghani, Afshari 

141 

Kazakhstan Karakul 6 
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Europe Albania Recka, Lara, Shkodrane, 

Ruda 

37 

Bosnia and Herzegovina Dubska, Privorska 6 

Croatia Dalmatian, Lika, Croatian 

Isles, Istrian 

49 

Cyprus CyprusFatTail 30 

Czechia Valachian 10 

Finland Finnsheep 154 

France Romanov, Tarasconnaise, 

Corse, Mourerous, 

Pr.alpes du Sud, 

Mourerous, Rouge de 

l'Ouest, Limousine, 

Merinos d'Arles, 

Ouessant, Berrichon du 

Cher, Noire du Velay, 

Blanc du Massif Central, 

Causses du Lot, Rava, 

Roussin de la Hague, 

Mouton Venden, Ãle de 

France, Mouton 

Charollaise, Manech Tete 

Rouge, Merinos de 

Rambouillet, Charmoise 

408 

Germany Bentheimer, 

EastFriesianWhite, 

EastFriesianBrown 

53 

Greece Kymi, Lesvos, Pelagonia, 

Mytilini, Chios, Boutsko, 

Frizarta 

1040 

Hungary Racka, Bbolna Tetra, 

Hortobegy Racka, Tsigai 

122 

Iceland Icelandic 54 

Ireland Galway 49 
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Italy Sardinian Ancestral Black, 

Biellese, Sambucana, 

Bagnolese, Fabrianese, 

Alpagota, Altamurana, 

Appenninica, Bergamasca, 

Comisana,  Delle Langhe, 

Gentile di Puglia, 

Laticauda, Leccese, 

Massese, Pinzirita, 

Sardinian White, 

Sopravissana, Valle del 

Belice 

445 

Montenegro Zuja, Oivska, Sora 17 

Netherlands Schoonebeker, Drenthe 

Heath, Veluwe Heath 

14 

North Macedonia Karakachanska, 

Ovchepolean 

16 

Norway Old Norwegian spaelsau, 

Norwegian White, Spael-

white 

71 

Poland Kamieniec, Polish 

Mountain 

11 

Romania Rusty Tsigai, Tsigai, 

Turcana 

65 

Russian Federation Romanov 80 

Serbia Lipska 7 

Slovenia Jezersko-SolÄava 5 

Spain Segurena, Merino 

Estremadura, Ripollesa, 

Aragonesa, Castellana, 

Latxa, Ojalada, Sasi-Ardi, 

Xisqueta, Churra 

307 

Switzerland Bundner Oberlander 

Sheep, Engadine Red 

Sheep, Swiss Mirror 

Sheep, Valais Blacknose 

Sheep, Valais Red Sheep 

120 
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Turkey Karakas, Norduz, Sakiz, 

Qezel 

95 

United Kingdom Boreray, Wiltshire, 

BorderLeicester, 

IrishSuffolk, Soay 

253 

 

- Bioclimatic information  

Bioclimatic variables were obtained from the WordClim database with a spatial resolution of 

30 seconds using the GPS coordinates for each population and smarterapi R package version 

0.1.2 (Cozzi 2022). Bioclimatic variables represent trends data, seasonality and extreme or 

limiting environmental factors (Table 2).  

Table 2. Nineteen bioclimatic variables derived from WordClim database at 

http://www.worldclim.org/bioclim. 

Variable Definition 

Bio1 Annual mean temperature 

Bio2 Mean Diurnal Range (Mean of monthly – max temp - min temp) 

Bio3 Isothermality (bio2/bio7) x 100 

Bio4 Temperature Seasonality (SD x 100) 

Bio5 Max Temperature of Warmest Month 

Bio6 Min Temperature of Coldest Month 

Bio7 Temperature Annual Range (bio5-bio6) 

Bio8 Mean temperature of Wettest Quarter 

Bio9 Mean temperature of Driest Quarter 

Bio10 Mean temperature of Warmest Quarter 

Bio11 Mean temperature of Coldest Quarter 

Bio12 Annual Precipitation 

Bio13 Precipitation of Wettest Month 

Bio14 Precipitation of Driest Month 

Bio15 Precipitation seasonality (Coefficient of Variation) 

Bio16 Precipitation of Wettest Quarter 

Bio17 Precipitation of Driest Quarter 

Bio18 Precipitation of Warmest Quarter 

Bio19 Precipitation of Coldest Quarter 

 

- Principal components analysis and LFFM algorithm   

Principal Component Analysis was conducted to evaluate the genetic structure and reduce the 

risk of false positive detection. The numbers of PCA that adequately describe the dataset are 

included as population structure predictors for the association analysis. The PCA analysis was 
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divided in two subsets: 1) On the entire dataset, selecting 10-20 randomly animals by population 

in order to limit the size of bigger groups and prevent biassed estimations and 2) data subsets 

separated by Continent. As a first approach, we separated a dataset that included some 

populations of Colombia, Brazil, Spain and Africa and applied the Latent Factor Mixed Models 

(LFFM) to determine SNPs significantly associated with the geographic and environmental 

variables. The FDR - q value was calculated for each locus based on the p-values in R. We 

identified genes related to oxidative stress (CAT, BLF), thermotolerance (FGF2, GNAI3, 

PLCB1) and altitude (PPP1R12A, RELN, PARP2), showing that some environmental and 

geographic selection pressures drive evolution and local adaptation. 

5. Imputation of missing SNP genotypes 

Every time SNP genotype data are obtained, be it from sequencing (e.g. whole-genome 

resequencing, RAD-sequencing/GBS etc.) or array-based genotyping technologies, a fraction 

of SNP remains uncalled, generating missing SNP-genotype data. Many types of analysis in 

statistical genetics can not handle missing data points, and require a complete dataset: therefore, 

the imputation of missing SNP data is necessary. Also, in many circumstances SNP genotype 

data with different densities are available for different animals (e.g. low- and high-density SNP 

array data), and a common approach is to impute the low-density data to the high-density array. 

Given the pervasive presence of the imputation of missing SNP data, it is relevant to measure 

the accuracy of such imputation. As a matter of fact, imputation accuracy can vary widely 

depending on the breed/population, the data size and the imputation scenario. 

We used 50k SNP array data from 6-7 goat breeds (Alpine, Angora, Boer, Barki, Creole, 

Landrace, Saanen) to simulate two imputation scenarios: 

1. gap-filling: impute residual missing SNP genotypes in the 50k SNP array data; to 

measure the accuracy of imputation, artificially missing SNP genotypes (SNP genotypes 

that we know, but pretend we don’t and set them to missing) were injected in the dataset: 

1%, 5%, 10%. Missing SNP genotypes were then imputed with different sample sizes: 

100, 80, 60, 40, 20 

2. low-to-high density imputation scenario: from 50k SNP data, we subsampled 10, 20, 30 

and 40 animals and pretended they had only low density SNP data. We then imputed 

back to 50k data (higher density) and measured the accuracy of imputation. Different 

total sample sizes were tested: 100, 80, 60. The low-density SNP array contained 15k 

SNPs and was subsampled randomly from the 50k SNP array. 

In all cases, the accuracy of imputation was measured with Cohen's kappa coefficient of 

concordance between imputed and known SNP genotypes. Figure 9 and Figure 10 show the 

results of the imputation experiments. Each experiment (combination of scenario, sample size, 

missing rate) was run 10 times, and averages are presented (solid lines) plus boxplots of 

distributions of all accuracy values. As for the gap-filling scenario, we see that imputation 

accuracy varies greatly in the different goat breeds. In general, imputation accuracy decreases 

with decreasing sample sizes, while the missing rate does not seem to have too much influence 

(at least in the interval tested: 1% - 10%). However, while in the Boer, Landrace, Angora and 

Alpine breeds the accuracy was high for most sample sizes tested, degrading only where 40 

samples or fewer were used; for Creole and especially for the Barki breed, imputation accuracy 

was always very low.  
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Figure 9. Gap-imputation scenario. Imputation accuracy with decreasing sample size (x axis) 

and increasing missing rate (panels with 1%, 5% and 10% missing SNP data), in different goat 

breeds. Imputation accuracy is measured as the Cohen kappa coefficient of concordance (y axis) 

between known and imputed SNP genotypes. ALP: Alpine; ANG: Angora; BOE: Boer; BRK: 

Barki; CRE: Creole; LNR: Landrace. 

 

Similar results were observed for the low-to-high imputation scenario, although with generally 

lower imputation accuracies. This came as no surprise, since imputing from low to high density 

is a much harder exercise compared to imputing residual missing SNP genotypes (“filling the 

gaps”). The general trend showed reduced imputation accuracy when a larger fraction of 

animals with low density SNP array was used (e.g. 40 low density samples out of 100/80/60). 

The overall sample size also had an impact, with lower average imputation accuracy when 60 

samples were used rather than 100 or 80. Again, and more markedly, we observed huge 

variation between goat breeds: The accuracy of imputing from low to high density was 

reasonably high in Landrace, Boer, Angora and Alpine goats, much worse in Saanen and Creole 

goats. In Barki goats the accuracy of imputation was practically zero in all tested scenarios. 
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Figure 10. Low-to-high density imputation scenario. Imputation accuracy with increasing 

fractions of samples with low-density SNP data (x axis) to be imputed to high(er) density SNP 

data. Different total sample sizes were tested (panels with 100, 80 and 60 samples).  Imputation 

accuracy is measured as the Cohen kappa coefficient of concordance (y axis) between known 

and imputed SNP genotypes. ALP: Alpine; ANG: Angora; BOE: Boer; BRK: Barki; CRE: 

Creole; LNR: Landrace; SAA: Saanen. 

 

6. Runs Of Homozygosity and Heterozygosity-Rich Regions: two case 

study for their detection   

 

6.1 Distribution of heterozygosity-rich regions (HRR) in the genome of local 

vs commercial goat breeds 

Heterozygosity-rich regions (HRRs) are regions of unusually high heterozygosity in the 

genome of diploid organisms (Williams et al. 2016) and are still largely uncharacterized in 

animals. In the present study we looked for HRRs in the goat genome, specifically looking for 

common HRRs across commercial and local breeds. We used SNP genotype data from widely 

distributed commercial breeds (“commercial”) and locally adapted breeds (“local”): the Barki 

(BRK), Creole (CRE) and Landrace (LNR) (local), and the Alpine (ALP), Boer (BOE) and 

Saanen (SAA) (commercial) breeds, for a total of 1072 goats. SNPs were obtained from the 

GoatSNP50 BeadChip (Illumina Inc., San Diego, CA) which includes 53,347 SNPs (mapped 

on ARS1.2). Only SNP loci on the goat autosomes (chromosomes 1 - 29) were used, filtered 

for MAF > 0.05 and call-rate (> 95% locus-wise, > 80% sample-wise). After filtering, 1051 

goats and 47,689 SNPs were left for the analysis. Plink v.1.9 was used for data management 

and filtering (Chang et al. 2015). HRR were detected by scanning the ordered sequence of SNP 
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loci with the window-free method described by Marras et al. (2015). The following parameters 

were used for the detection of HRR: minimum 15 SNPs and minimum length of 250 kbps to 

define a HRR; maximum gap 1e+03 kbps between adjacent SNPs in a HRR; maximum 3 

homozygous SNPs and 2 missing SNPs in a HRR. The R package detectRUNS was used for 

the detection of HRR (https://cran.r-project.org/web/packages/detectRUNS/). HRR islands 

have been defined as HRR found (identical) in at least 20% of the samples (within breed). 

A total of 73,173 HRRs were detected in the 1,051 goats remaining after filtering (69.6 HRRs 

per goat, on average). More HRRs have been detected in commercial breeds than in local 

breeds, both overall (50,477 vs 22696) and per goat (83.3 vs 51). The average length of detected 

HRRs was 805.7 kbps in commercial breeds and 794.5 kbps in local breeds. Looking at HRRs 

shared by individual goats, 79 HRR islands (HRRs in >= 20% of the samples) have been 

identified. Figure 11 shows HRR islands in chromosomes harbouring more than one island. 

Common HRR islands are found on chromosomes 1, 10 and 14 (across 3 breeds), chromosomes 

3, 13 and 18 (across 4 breeds), and on chromosome 12 (across 5 breeds). The HRR islands most 

shared across breeds is the one found on chromosome 12 at 49.884 - 51.611 Mbps. Figure 12 

shows a visualisation of this common HRR island across samples (B, right), and the 

corresponding peak of SNP loci found to be lying inside it (A, left). 

 

 



 

  SMARTER – Deliverable D4.2 

 
 

SMARTER - H2020                                           Page 22 | 29 

 

 

Figure 11. Visualisation of HRR islands detected in the genome of commercial (ALP, BOE, 

SAA) and local (BRK, CRE, LNR) goat breeds. Chromosomes with only one HRR have been 

excluded. The thickness of the HRR is proportional to the percentage of samples in which it 

has been detected. The length of the HRRs has been artificially extended (multiplied by 10) for 

the sake of visualisation. 
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Figure 12. HRR island on goat chromosome 12. A) proportion of times SNP loci fall within 

HRRs in the analysed goat samples (across breeds); B) distribution of HRRs on chromosome 

12 in goat samples (a clear signature of heterozygosity is visible at 49.9-51.6 Mbps). 

 

6.2 Choosing parameters for the detection of ROH and HRR in the genomes 

of sheep and goats 

To detect heterozygosity-rich regions (HRRs) in the genome, several parameters are used, e.g. 

the minimum length of the HRR, the minimum number of SNPs inside the HRR, the maximum 

gap between adjacent SNP loci, the maximum number of missing and homozygous SNP loci 

allowed within the HRR. It is however unclear how sensitive results are to the specific values 

of the detection parameters. We used 50k SNP array data from sheep (Lacaune) and goats 

(Saanen) recruited for the project, and from publicly available cow (Holstein) data (Gautier et 

al. 2012). We selected only autosomes, and filtered SNP data for MAF > 0.05, call-rate > 95% 

(locus) and > 90% (sample). For the detection of HRR we used the window-free method 

(Marras et al. 2015) implemented in detectRUNS (Biscarini et al. 2018). Around a base scenario 

(min. 15 SNP, min. length 250 kb, max gap 103 kb, max 3 homozygous SNP, max 2 missing 

SNP) we tweaked parameters and looked at the average n. of HRR detected, their average 

length, minimum n. of SNP within HRR, n. of samples with at least one HRR). 

Figures 13-16 show the results. The parameters minimum number of SNP required and 

maximum number of homozygous SNP allowed (Figures 13 and 15) are those with the largest 

impact on the detection of HRR in all three species: in particular, when these parameters are 

too stringent (more than 20 SNP required and 0 homozygous SNP allowed) we observed a 

dramatic decline in the number of HRR detected. The other two parameters, minimum length 

of HRR required and maximum number of missing SNP allowed, appeared to have little effect 

on results, at least in the tested ranges. Interestingly, the only counterintuitive result was 

observed in sheep for the maximum number of homozygous SNP allowed in the HRR. In goats 
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and cows, as more homozygous SNP are allowed, more numerous and longer HRR are detected. 

In sheep, we do detect more HRR, as expected, but these are initially long, then get shorter with 

a minimum at 3 homozygous SNP, to then reprise slightly for 4 and 5 homozygous SNP. This 

may be linked to a different distribution of heterozygosity in Lacaune sheep compared to 

Saanen goats and Holstein cows. 

 

Figure 13. Detection of HRR for different values (10-25) for minimum number of SNP required. 

avg_hrr: average number of HRR/animal; avg_kb: average length of HRR; avg_nSNP: average 

number of SNP within HRR; nhrr: total number of HRR detected; samples: number of samples 

with at least one HRR. 
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Figure 14. detection of HRR for different values (150-350 kb) for minimum length of HRR 

required. avg_hrr: average number of HRR/animal; avg_kb: average length of HRR; 

avg_nSNP: average number of SNP within HRR; nhrr: total number of HRR detected; samples: 

number of samples with at least one HRR. 
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Figure 15. Detection of HRR for different values (0-5) for the maximum number of 

homozygous SNP allowed in HRRs. avg_hrr: average number of HRR/animal; avg_kb: average 

length of HRR; avg_nSNP: average number of SNP within HRR; nhrr: total number of HRR 

detected; samples: number of samples with at least one HRR. 
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Figure 16: Detection of HRR for different values (0-5) for the maximum number of missing 

SNP allowed in HRRs. avg_hrr: average number of HRR/animal; avg_kb: average length of 

HRR; avg_nSNP: average number of SNP within HRR; nhrr: total number of HRR detected; 

samples: number of samples with at least one HRR.6. Conclusion 

Exploring the demographic history of breeds is relevant to understand their current adaptation 

potential. So, investigating the demographic history, the genetic diversity and population structure is 

key, since they are keenly intertwined to the process of adaptation. We observed a common genetic 

component between the Spanish breeds and the Greek one together with some Hungarian sheep 

breeds. We retrieved a similar background in the Greek sheep breeds with some introgression in 

Frizarta from Assaf, supported by all the analyses and in agreement with the known origin of this breed.  

Some French breeds look well genetically distinct, and the Uruguayan Creole showed some 

introgression from the Spanish Ojalada. For the new genotyped local goat breeds we detected the 

influence of Alpine breed and other transboundary, even if much less in the Swedish goats. With these 

results we acquired more information about local and traditional breeds belonging to part of Europe 
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and the world still poorly unexplored, with a greater contribution for sheep.  The results from the 

imputation experiments highlighted the importance of measuring (and being aware of) the accuracy 

of imputation, given that this varies wildly between scenarios (e.g. gap filling or low-to-high density 

SNP data) and between breeds. The analysis of HHRs showed the importance of this tool to estimate 

levels of heterozygosity and to identify genomic regions where genetic variability is conserved: 

choosing the right parameters for the detection of HHR is critical, since different values can sometimes 

lead to very different results. 

7. Deviations or delays 

A slight delay in the provision and uploading  of the last data for foreground population  was reflected 

in a few days delay in submission of the deliverable. 
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