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About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges. 

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency. 
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1 Summary 

This document presents a report on potential benefit from improvements in the estimation of genomic 

relationship matrices to enhance the quality of the genomic prediction estimates across populations. 

Simulation was used to test the impact of including non-additive genetic effects to remove nuisance 

and improve additive breeding value estimates. The value of adaptations in the genomic relationships 

to take into account the divergence between populations was also assessed. The results from the 

simulations showed limited benefit in the accuracy of the estimates when including dominance or 

accounting for population divergence. Finally, we described the method of metafounders to enhance 

the Numerator relationship matrix when there is missing information on pedigree within or across 

populations and its potential impact when used with ssGBLUP evaluation. Studies being carried out 

with this method have shown that the use of metafounders has the potential to enhance the accuracy 

of ssGBLUP for prediction across populations. 
 

2 Introduction 

Genomic Prediction methods use high dense genotyping in the genetic evaluation to improve the 
accuracy of the predictions. The most popular method is the genomic Best Linear Unbiased predictor 
(GBLUP) (GARRICK 2007; VANRADEN 2008) as it has the practical convenience that its implementation is 
similar to traditional pedigree-based BLUP, but the Numerator Relationship Matrix (NRM) is replaced 
by a Genomic Relationship Matrix (GRM) calculated with dense genotype information. Since genetic 
relationships are calculated with genomic information the estimation of genomic breeding values 
(GEBVs) is possible for non-pedigree-related, unrecorded individuals and even from other populations. 
Moreover, further developments on this method have resulted in the single-step GBLUP (ssGBLUP), 
which allows to include information of genotyped and non-genotyped individuals on the same analysis, 
by using a relationship matrix that combines the NRM and the GRM (LEGARRA et al. 2009; AGUILAR et al. 
2010; CHRISTENSEN AND LUND 2010; LEGARRA et al. 2014). 

 
The possibility of prediction across populations is of great value in the implementation of genomic 
prediction in populations, which for some specific reasons -economical or logistic ones- cannot have 
an adequate training population. The success of prediction across populations, however, has not 
always been certain -in term of obtaining GEBVs with an acceptable level of accuracy-, and studies 
showing so have been reported in the literature for several species (e.g.(HAYES et al. 2009; RIGGIO et al. 
2014; ZHOU et al. 2014)). 
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Reasons for the failure to predict across populations are various, but a common one is the level of 
divergence between the populations in question. Genomic prediction, basically, estimates the effect 
of mostly neutral SNPs with the intension to capture the effect of linked QTLs which are in linkage 
disequilibrium (LD) with them. The magnitude and sign of the estimated effects for the neutral SNPs 
vary according to the strength and pattern of linkage phases between SNPs and linked QTLs. Then, the 
success of these methods to accurate predict the genetic breeding values of candidates depends on 
the predicted candidates having similar LD pattern to the training group where the SNP effects were 
calculated. Using such SNP estimates in another population with very different LD pattern would also 
be adding some extra noise to the estimated breeding values. 

 
Methods to account for the degree of divergence between populations have been proposed. 
MAKGAHLELA et al. (2013) proposed to adjust the genotype score by using the ancestral allele frequency 
of the population to calculate a multibreed GRM to be used in the evaluation. Additionally, ZHOU et al. 
(2014) modified the multibreed GRM to weight the relationships between individuals of different 
populations, based on the persistence of linkage phase between the two populations. However, when 
testing these methods using real data they showed moderate or no impact on the accuracy of 
prediction across population. The question which remains to be answered is whether these results are 
specific to the genetic divergence pattern of the populations in which they were tested or they are an 
overall trend expected from the method to account for divergence between populations. 

 
Another possible reason for failure to predict across populations could be related to the presence of 
non-additive genetic effects. The genetic influence on the variation of quantitative traits is of 
heterogeneous type, with the additive and dominance effects being the main genetic components and 
to lesser extend their epistatic interaction. Other genetic factors controlling variation in performance 
may include imprinting and epigenetics. From the selection point of view the additive component is 
mostly the component of interest as selection act on this component only. The restricted value of 
dominance and epistasis, partly explains why genetic evaluations are generally implemented with a 
model assuming additive effect only. But, another reason for ignoring dominance effects in the 
evaluation has been the difficulty in estimating them. However, genomic prediction using genomic 
data has made easier to extract information on dominance, partially solving the problem of poor 
estimation. Methodologies for the construction of GRM to model dominance in the evaluation are 
already available (e.g.(VITEZICA et al. 2013)). 

 
Accounting for dominance in the genetic evaluation is not only an academic argument, but it may have 
some practical benefits. Whilst the dominance effects would be ignored during the selection decision 
process, they can be considered as a nuisance and their inclusion in the model of analysis may improve 
the precision of the additive effects themselves. However, the results from some studies using real 
data show little benefit. Additionally, the proportion of the total genetic variance explained by 
dominance tends to be much smaller than that explained by the additive variance, so ignoring it in the 
evaluation has a little impact on the evaluation. The objective here was to test whether including 
dominance in the evaluation may yield benefit in the accuracy of the additive effect. 

 
The original implementation of ssGBLUP may also have some drawbacks when using it for across 
population genomic prediction. The main feature of ssGBLUP is that it incorporates information from 
genotype and ungenotyped individuals in a single analysis by using a relationship matrix which 
combines the NRM with the GRM. To make these two matrices compatible, the GRM is rescaled so it 
has the same scale as the submatrix of the NRM for genotyped individuals (VITEZICA et al. 2011; LEGARRA 

et al. 2014). However, when considering multiple populations, there is an extra complexity that 
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populations will not be linked via pedigree, so the NRM will have zero relationship between individuals 
of different populations. Nevertheless, the genomic information will allow to estimate a degree of 
relatedness between individuals from different populations, which will be used during the across 
population prediction. Such inconsistence between the NRM and GRM would have an impact on the 
prediction. Modifying the GRM to account for this inconsistence would remove useful information 
affecting the estimates, so instead the NRM should be modified. LEGARRA et al. (2015) proposed a 
method to modify the NRM in order to take into account the missing pedigree information by assigning 
metafounders with some degree of relationships between themselves (including themselves). Such 
approach would modify the NRM, allowing for relationship between individuals of different 
populations and making it consistent with the GRM. 

 
In this report we tested the proposed methods to account for population divergence in the GRM under 
a wide range of scenario to determine the full potential of these methods to improve prediction across 
populations. We also tested the impact of accounting for dominance in the estimation of additive 
breeding values, by using simulation. Finally, we described the use of metafounders to adjust the multi-
population NRM so that it can be used in ssGBLUP for prediction across populations. 

 

3 Adapting the genomic relationship to improve prediction across 

divergent populations 

3.1 Simulation protocol 

3.1.1 Simulation of the gene pool of the reference population in linkage disequilibrium 

The gene pool of the population to be used as reference in the genomic prediction was simulated by 
creating a founder population in linkage disequilibrium (LD) and, thereafter, expanded it to create a 
larger population still representative of the smaller one, but with less closely related individuals. This 
final expanded gene pool population was then used to sample the population for each replicate. 

 
In the first step, the founder population in LD was simulated using a mutation-drift-equilibrium 
algorithm as suggested by MEUWISSEN et al. (2001). Briefly, an initial population of N individuals is 
allowed to reproduce, with each individual producing two offspring (one male and one female). Their 
genome is composed of several chromosomes with biallelic loci mutating at a given rate. As the 
population develops across the generations, new mutations appear which are lost or increase in their 
frequency due to drift. After a large number of generation, the resulting population reaches an 
equilibrium with a genome containing segregating linked loci in LD. The simulation can be tuned to 
yield a specific LD pattern by adjusting the population size and mutation rate parameters. This 
population in equilibrium will be referred here as the founder population. In the second step, the 
founder population is allowed to reproduce by further extra generations with a low expansion rate and 
no mutation rate, and individuals of the last generation are taken as the gene pool population. By 
sampling the individuals to be used in each replicate from a much enlarged gene pool population, it 
allows independence between replicates while ensuring that they share a similar LD pattern. 

 
In order to simulate the genome with similar LD pattern as a typical commercial sheep population, the 
initial population to create the LD (step 1) was composed of 100 individuals (50 males and 50 females). 
The genome consisted of 26 autosomal chromosomes of 1 Morgan, each with 1,000,000 loci (all fixed 
to one allele) with their mutation rate set at 10-7. After 10,000 generations, over 9,000 loci were 
segregating at different frequency in each chromosome (around 250,000 segregating SNPs were 
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simulated across the whole genome). Individuals at generation 10,000 were considered to be the 
founder population. For the expansion step, the founder population was further reproduced by four 
extra generations at a 4X expansion rate (i.e. a male/female was randomly mated with several mates 
to produce 8 offspring each). Finally, 5,000 individuals from generation 10,004 were selected to form 
the gene pool. In order to further reduce close relationships among individuals from the gene pool, 
both the LD creation and expansion steps for each chromosome were done independently. This 
approach means that a given pair of individuals could have a half sib relationship at a given 
chromosome only but not for the rest. 

 

3.1.2 Simulation of the gene pool for other populations distantly related to the reference 

population 

To create a distantly related population, the reference population was allowed to continue to evolve 
in two further extra periods. First, a ‘divergent period’ was carried out where the founder population 
(from generation 10,000) was reproduced for a shorter number of generations to allow drift and 
mutation to change the gene frequencies and LD pattern of all segregating loci. Second, an ‘expansion 
period’ without mutation followed to create the enlarged gene pool for the new population. 

 
The degree of the divergence of the population was controlled by varying the number of extra 
generations and mutation rate assumed. The number of extra generations considered ranged from 10 
to 75 and the mutation rate between 10-6 and 10-3. The upper range of the mutation rate may appear 
unrealistically high, but this was done with the purpose of improving the computational efficiency for 
generating populations with different degrees of divergence from the reference population. In reality, 
a population may need to evolve over a larger number of generations to achieve similar level of 
divergence we simulated with higher mutation rate. The expansion period to create the gene pool had 
the same characteristics as the one used to create the gene pool for the reference population. 

 

3.1.3 Genetic architecture and population structure 

Genome simulation: For a given replicate, the n individuals used in the reference population were 
obtained by sampling 2n haplotypes from their associated gene pool, with each chromosome done 
independently. A total of 1,100 loci that were still segregating in the sampled population were 
randomly selected for each chromosome, to become QTLs (100) or SNPs (1,000) which belong to the 
chip array used to calculate the genomic relationship matrices (GRMs) needed in the evaluation. The 
total of number of QTLs and SNPs used across the whole genome were 2,600 and 26,000, respectively. 
This protocol of selecting individuals from the expanded gene pools and the QTLs/SNPs from the 9,000 
available loci/chromosome ensured that the sampled population to be used in a replicate avoided 
closely related individuals and replicates were truly independent among themselves. When the 
scenario includes other(s) population(s), the genome of the individuals were sampled from their 
respective gene pool, but the sets of QTLs and SNPs were the same as the ones selected in the 
reference population. 

 
Genetic effects and phenotype simulation: Once the genome of the reference population was 
sampled, the additive gene effect (𝑎) for each QTL was sampled from a normal distribution with mean 
zero and variance 1. When the scenario under study assumed a model with dominance, this effect (𝑑) 
was sampled in a similar fashion assuming independence between the additive and dominance effect. 
Once 𝑎 and 𝑑 were sampled, the total genetic effect, the additive breeding value and the dominance 
deviation were calculated for each QTL given the individual genotype for the QTL in question. For a 
QTL k, these values for individuals with genotypes AA, AB and BB were: -𝑎𝑘, 𝑑𝑘 and 𝑎𝑘 for total genetic 
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effect; −2𝑝𝑘𝛼𝑘, (𝑞𝑘 − 𝑝𝑘)𝛼𝑘 and 2𝑞𝑘𝛼𝑘 for the additive breeding values; and −2𝑝𝑘
2𝑑𝑘, (𝑞𝑘 − 𝑝𝑘)𝑑𝑘 

and −2𝑞𝑘
2𝑑𝑘 for the dominance deviation, where 𝑝𝑘 and 𝑞𝑘 are the frequency for alleles A and B and 

𝛼𝑘 is the allele substitution effect, equal to 𝑎𝑘 + (𝑞𝑘 − 𝑝𝑘)𝑑𝑘. Thereafter, these values for all QTLs are 
summed over within each individual to obtain their overall genetic effects. 

 
To obtain targeted genetic additive and dominance variances (i.e. 𝜎2 and 𝜎2), the values sampled for 

𝑎 𝑑 

𝑎𝑘 and 𝑑𝑘 (when non-zero) needed to be rescaled, and the approach used varied depending on 
whether the genetic model was fully additive or included dominance. When the genetic model was 
fully additive, the rescaling was done by: (i) calculating the additive breeding value for all individuals 
sampled in the reference population, (ii) estimating their variance 𝜎̂2 and then (iii) rescaling 𝑎 by the 

 
 

𝜎2 

𝑎 𝑘 

constant √ 
𝑎⁄    . After rescaling of 𝑎 , the variance of the breeding values for all animals in the 

𝜎̂𝑎 

reference population matches the targeted 𝜎2. 

 
For a model with dominance, the rescaling was done first on the dominance effect, and thereafter, the 
additive effect was rescaled using a recursive approach. Similarly as with a fully additive model, the 
dominance deviations for each QTL were calculated given the sampled 𝑑𝑘, they were summed over to 

calculate the individuals’ overall dominance effect and its variance 𝜎̂2 calculated to obtain the rescaling 

𝜎2 

constant as √ 
𝑑⁄ 2. Thereafter, following a similar protocol as before: (i) 𝛼𝑘 were estimated (with the 

𝜎̂𝑑 

current value for 𝑎𝑘 and the already rescaled 𝑑𝑘) and (ii) the additive breeding values calculated and 
summed over all QTLs to obtain the individuals’ total additive breeding values; (iii) the variance of 
breeding values in the population 𝜎̂2 is calculated and (iv) used to obtain a new the scaling constant 

𝜎2 
2 2 

equal to√ 𝑎⁄  2; (v) 𝛼𝑘  and the additive breeding values are recalculated as well as their 𝜎̂𝑎 . If 𝜎̂𝑎  is 
𝑎 

higher (or lower) than the targeted 𝜎2, the scaling constant is slightly decreased (or increased); 𝑎 are 
𝑎 𝑘 

rescaled  again  and  the  additive  breeding  values  and  𝜎̂2  reestimated.  Then  an  iterative  process  of 
increasing or decreasing the scaling constant when 𝜎̂2 does not match the targeted 𝜎2 is carried out 

𝑎 𝑎 
and the recursion stops once 𝜎̂2 is equal to 𝜎2. 

𝑎 𝑎 
 

Once 𝑎𝑘 and 𝑑𝑘 were properly rescaled to yield the right magnitude for 𝜎2 and 𝜎2, the phenotypic 
𝑎 𝑑 

record for an individual was calculated by adding a random term to their total genetic effect which is 
sampled from a Normal distribution with mean zero and variance 𝜎2. When the scenario under study 
included other populations, their genetic effects were calculated using the same value for 𝑎𝑘 and 𝑑𝑘 

sampled for the reference population. Because the QTL allele frequencies for these populations 
deviated from the one observed in the reference population, slight changes in the magnitude for 𝜎2 

and 𝜎2 were observed in these extra populations. 

 

3.1.4 Genomic evaluation 

The genomic estimated breeding values (GEBVs) were calculated based on the genomic best linear 
unbiased prediction (GBLUP) method, where the covariance matrix to model the genetic effects of all 
individuals included in the analysis are calculated using genomic information. Since this simulation 
study addressed two main factors influencing the efficiency of the genomic evaluation across 
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GBLUP with only additive effects 

 
The following mixed model was used to estimate the GEBVs: 

 
𝐲 = μ + 𝐙𝐮 + 𝐞 [1] 

 
where y is the vector of observations, μ is the overall mean effect, Z is the incidence matrix linking the 
individuals to their phenotype, 𝐮 is the vector of genomic additive breeding value effects distributed 
as N(0, 𝐆σ2) and 𝐞 is the vector of environmental deviation distributed N (0, Iσ2), with 𝐆 and I being 

𝑎 𝑒 
the genomic relationship matrix and an identity matrix, and σ2 and σ2 the genetic additive and the 

residual variance, respectively. 
𝑎 𝑒 

 

The 𝐆 matrix was obtained using genotype information from the 26,000 SNPs included in the SNP array. 
The 𝐆 matrix was calculated using a method commonly known as the VanRaden’s method 2 (VANRADEN 

2008) and it is based on the cross product of (rebased and rescaled) genotype scores. Hence, for a pair 
of individuals (i,j) their relationship is: 

 

1 𝑚 
𝑖,𝑗 𝑚     𝑘=1 

(𝑥𝑖𝑘−2𝑝𝑘)(𝑥𝑗𝑘−2𝑝𝑘) 

2𝑝𝑘 (1−𝑝𝑘) 
[2] 

 

where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the number of copies of B alleles in the genotype of i and j at SNP k, equal to 
0,1,2 for individuals with genotype AA, AB and BB, respectively; 𝑝𝑘 is the observed frequency of allele 
B in the genotyped individuals and m is the number of SNPs in the SNP array (i.e. m=26,000). 

 
In order to take into account that, for some scenarios, the analysis was done including individuals from 
different populations, and GBLUP was performed using three different variations of 𝐆 and denoted as: 

 
• GBLUPO: where the relationship matrix is calculated assuming that 𝑝𝑘 is the overall allele frequency 

across all individuals included in 𝐆, without distinction on which population they belong to. 

• GBLUPP: where 𝑝𝑘 refers to the allele frequency of the population to which the individuals belong 
to (MAKGAHLELA et al. 2013). Hence, for a pair of individuals from the same population, their rela- 
tionship is the same as [2] but using their population specific allele frequencies. But for pairs from 
two different populations 𝐺 = 

1 
∑𝑚 

 

(𝑥𝑖𝑘−2𝑝𝑖𝑘)(𝑥𝑗𝑘−2𝑝𝑗𝑘) , where 𝑝 and 𝑝 are the allele 

𝑖,𝑗 𝑚     𝑘=1 
2√𝑝𝑖𝑘 (1−𝑝𝑖𝑘 )𝑝𝑗𝑘 (1−𝑝𝑗𝑘) 

𝑖𝑘 𝑗𝑘 

frequencies from population of individual i and j. 
• GBLUPW: where the relationship matrix is also calculated using population specific allele frequency, 

but it considers that the LD patterns may differ across populations, and it takes it into account by 
adding a weighing factor to the relationships between two individuals of different populations 
(ZHOU et al. 2014). Hence, their relationship is 𝐺 = 

1  
∑𝑚 

 

(𝑥𝑖𝑘−2𝑝𝑖𝑘)∗𝑤𝑖,𝑗,𝑘 , where 𝑤 is 

𝑖,𝑗 𝑚     𝑘=1 
2√𝑝𝑖𝑘 (1−𝑝𝑖𝑘 )𝑝𝑗𝑘 (1−𝑝𝑗𝑘) 

𝑖,𝑗,𝑘 

the weighing factor at SNP k for these two specific populations. The weighing factor used was the 
persistence of linkage phase for SNP k, between these two populations (see below for description 
how this weight is calculated). 
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GBLUP with additive and dominance effects 

 
Following derivation from VITEZICA et al. (2013), the model used in the GBLUP to account for dominance 
effect is equal to: 
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𝑑 

𝐴,𝐵 

 
 

𝐲 = μ + 𝐙𝐮 + 𝐙𝐝 + 𝐞 [3] 

 
where 𝐝 is the vector of dominance deviation distributed N(0, Dσ2), with D being the dominance 

genomic relationship matrix and σ2 the dominance variance. Following similar approach as 
VanRaden’s method 2, the elements in the matrix are equal to 𝐷 = 

1 
∑𝑚 

 

(𝑤𝑖𝑘)(𝑤𝑗𝑘) , where 𝑤 

𝑖,𝑗 𝑚     𝑘=1 [2𝑝𝑘 (1−𝑝𝑘)]2 𝑖𝑘 

and 𝑤𝑗𝑘 are the dominance deviation score of i and j at SNP k equal to −2𝑝2, 2𝑝𝑘𝑞𝑘 and −2𝑞2 for 
𝑘 𝑘 

individuals with genotypes AA, AB and BB, respectively. The model including dominance can also be 
implemented using a genotypic parameterisation where the effects 𝑎 and 𝑑 are included in the model 
instead. Then the dominance relationship matrix is constructed by redefining 𝑤𝑖𝑘 and 𝑤𝑖𝑘 as 
  −2𝑝𝑘𝑞𝑘 ,

 (1−2𝑝𝑘𝑞𝑘) 
and

 −2𝑝𝑘𝑞𝑘  for individuals with genotype AA, AB and BB, 

[2𝑝𝑘𝑞𝑘(1−2𝑝𝑘𝑞𝑘)] [2𝑝𝑘𝑞𝑘(1−2𝑝𝑘𝑞𝑘)] [2𝑝𝑘𝑞𝑘(1−2𝑝𝑘𝑞𝑘)] 

respectively.   Additionally the dominance variance estimated with the genotypic parameterisation 
changes to ∑𝑚   [2𝑝𝑘𝑞𝑘(1 − 2𝑝𝑘𝑞𝑘)] σ2. For further details of the parameterisation for fitting 

𝑘=1 𝑑 

dominance in the GBLUP see (VITEZICA et al. 2013). 
 

3.1.5 Genetic distance measures between populations 

The degree of divergence between the reference population and the other ones was quantified using 
two criteria: the Euclidean distance and their persistence of linkage phase. 

 
Euclidean distance between populations: To calculate the genetic distance within population and 
between two populations, first the additive GRM including all individuals from both populations is 
calculated and an Eigen decomposition is used to decompose it into its Eigenvalues and Eigenvectors. 
Since the Eigenvectors are orthogonal vectors, the Euclidean distance (𝛿) between a pair of individuals 

(x,y) is calculated as 𝛿 = √∑𝑛 𝜆 (𝑣 2 − 𝑣 , where 𝛿 is the Euclidaen distance between x and 

𝑥𝑦 𝑖=1   𝑖 𝑥𝑖 𝑦𝑖) 𝑥𝑦 

y, 𝑣𝑥𝑖, 𝑣𝑦𝑖 are their loading in the eigenvector i respectively, 𝜆𝑖 the eigenvalue associated to i and n is 

the total number of the eigenvectors with non-zero eigenvalue. Hence, the average distance within a 
population is the mean distance between all pairwise comparisons for all individuals within the 
population. Similarly, the Euclidean distance between two populations is the mean distance of all pairs 
involving one individual from each population. 

 
Persistence of linkage phase: The linkage phase between two linked loci represents the degree of 
excess/deficit of the haplotypes relative to their expected frequency given the frequencies of the 
alleles in the haplotype in question. 

 

Let two linked loci A and B, the linkage phase between alleles A and B , is 𝑟 =
   𝑓𝐴1,𝐵1− 𝑓𝐴1∗ 𝑓𝐵1    ,  

 

1 1 𝐴1,𝐵1 √𝑓𝐴1∗ 𝑓𝐴2∗𝑓𝐵1∗ 𝑓𝐵2 

where 𝑓𝑥,𝑦 is the frequency of allele/haplotype 𝑦 at locus 𝑥, observed in the population. Hence, a 

positive (or negative) value for 𝑟𝐴1,𝐵1 means that allele A1 is more (or less) associated to B1 than what is 
expected due to random association given the allele frequencies. Note that the square of 𝑟𝐴?,𝐵? (𝑟2 ) is 

more commonly used as a measure of LD between two linked loci, but it does not indicate the direction 
of the phase. 
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Persistence of linkage phase between two populations is the degree of concordance of the linkage 
phases between the two populations. It is measured as the Pearson’s correlation between the linkage 
phases observed in haplotypes of consecutive loci in both populations, where a high and positive 
correlation means that the allele association between linked loci is similar in both populations. 
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Here the persistence of phase between two populations is estimated with only the loci included in the 
SNP chip array used for the genetic evaluation. While persistence relates to the whole genome or to a 
genomic region, a persistence value was given to each SNP by calculating the correlation in rolling 
intervals of 21 SNPs. For a given SNP, the closest 10 SNPs at each side were taken to calculate the 
correlation of the measures across the two populations (in average, the 21 SNPs used for each interval 
cover a genomic interval of 2 cM, see above). The rolling correlations (or their squared values) were 
used as in the calculation of the GRM to weight the relationship between individuals of different 
populations (see above). When the correlation for a SNP was negative, the weighing factor was set to 
zero, representing that the SNP does not affect the relationship across population. 

 

3.2 Effect on the accuracy of predicted additive breeding value when accounting for 

dominance in the genomic evaluation 

The objective here was to assess the impact of including dominance in the evaluation as a nuisance 
parameter to improve the accuracy of the additive effect. 

 
The simulation in this study assumed a population of 1,500 individuals, all genotyped for the 26,000 
SNPs in the chip array and 1,000 also having performance record for a given trait. The genetic 
architecture for the trait was assumed to have an additive and a dominance component. 

 
The protocol for simulating the genomic data and the performance records is as described above. At 
each replicate, the genotypes for the individuals were sampled from the gene pool from the reference 
population and thereafter a set of 1,100 segregating loci per chromosome selected randomly to be 
QTL (100) or part of the SNP array (1000) used in the evaluation. The QTL effects (additive and 
dominance) were sampled from a normal distribution and rescaled to yield the targeted additive, 
dominance and environmental variance (i.e. 𝜎2, 𝜎2 and 𝜎2). 

𝑎 𝑑 𝑒 
 

Three different GBLUP analyses were carried out, defined by the genetic model considered in the 
evaluation: (i) only additive effects were fitted, (ii) additive and dominance effects were fitted 
assuming a breeding value/dominance deviation parameterisation and (iii) additive and dominance 
effects were fitted assuming a genotypic parameterisation. 

 
Three different scenarios were simulated here. All assumed 𝜎2 = 20 and 𝜎2 = 80, but 𝜎2 changed 

𝑎 𝑒 𝑑 

across the scenarios taking values of 10, 20 and 30, representing a substantial proportion of the total 
genetic variance (i.e. 33.3%, 50% and 60% for when 𝜎2 was 10, 20 and 30, respectively). 

 
GBLUP evaluation was carried out and the accuracy of the additive genetic effect was calculated as the 
Pearson’s correlation between the true additive breeding values and their estimates obtained from 
the GBLUP analysis. The GBLUP was done assuming the true genetic variance being known or they 
were estimated from the reference animals prior the GBLUP evaluation. 

 
The results shown are the average of 100 replicates for each scenario. 

 
Table 1 shows the estimated variance components obtained from the REML analysis fitting the three 
different models of analysis (i.e. one additive model and two models with dominance). As it can be 
seen, the estimates for 𝜎2 were very close to the true value (i.e. 20) with all three models of analysis 
and when dominance is not fitted, this variance is absorbed by the environmental variance. These 
results suggest that the additive and the dominance effects may not be confounded between each 
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other, which may have some consequences on the accuracy of the estimates if not fitting dominance 
when it exists. 

 
Table 1. Estimated variance components for the three scenarios, obtained with the three models of 
analysis: (i) a fully additive, (ii) with dominance using the breeding value parameterisation and (iii) with 
dominance using the genotypic parameterisation. Log-likelihood (LogL) and Log-likelihood ratio test 
(LRT) are also reported. Results shown are average of 100 replicates. 

 

model  Estimate     

𝜎2 
𝑎  𝜎2 

𝑑 𝜎2 
𝑒 𝜎2 

𝑝 LogL LRT 𝜎2 = 0* 
𝑎 

 
True 𝜎2=10 

𝑑 

Additive 19.1  80.4 99.5 -2794.8   

Dominance (breeding value 
parameterisation) 

 

18.2 
 

12.1 
 

72.5 
 

102.8 
 

-2794.0 
 

1.5 
 

20% 

Dominance (genotypic effect 
parameterisation) 

 

16.0 
 

11.4 
 

73.3 
 

100.8 
 

-2794.1 
 

1.3 
 

19% 

 
True 𝜎2=20 

𝑑 

Additive 18.9  91.1 109.9 -2845.5   

Dominance (breeding value 
parameterisation) 

 

17.3 
 

24.0 
 

73.5 
 

114.8 
 

-2843.4 
 

4.3 
 

3% 

Dominance (genotypic effect 
parameterisation) 

 

12.9 
 

22.4 
 

74.8 
 

110.0 
 

-2843.3 
 

4.5 
 

1% 

 
True 𝜎2=30 

𝑑 

Additive 18.1  101.8 119.8 -2889.4   

Dominance (breeding value 
parameterisation) 

 

15.8 
 

34.4 
 

76.6 
 

126.7 
 

-2886.1 
 

6.5 
 

1% 
Dominance (genotypic effect 
parameterisation) 

 

9.3 
 

33.7 
 

77.5 
 

120.5 
 

-2885.7 
 

7.4 
 

0% 

*: percentage of replicates where 𝜎2 was estimated to be zero. 

 
Table 2 shows the accuracy of the genomic additive breeding values for the three models of analysis 
considered here and under the different scenarios defined by the magnitude of the dominance 
variance in the true model which was used to simulate the data. The accuracies are shown for 
individuals with phenotypic records (i.e. the training individuals) and individuals without phenotypic 
records, and the GBLUP was performed using the estimated variances obtained from the REML analysis 
or assuming the true variances. The results suggest that ignoring to fit the dominance effects in the 
model of analysis does not have a negative impact on the accuracy of the additive breeding value. 
Similar results have been reported previously using real data (e.g (VITEZICA et al. 2013)). But it is rather 
surprising that this was also the case for our simulation study, as our data were simulated assuming 
very large magnitude for dominance variance. Our expectation was that as dominance starts explaining 
large proportion of the total variance, it should become an important nuisance factor and not fitting it 
into the model of analysis would affect the prediction of the other effects. As described before, for the 
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scenarios considered here, the dominance effects explained 33%, 50% and 66% of the total genetic 
variance. 

 
The no benefit from fitting dominance seems to be related to a lack of confounding in the information 
(for additive and dominance) contained in the data. Results from the REML analyses when dominance 
is not fitted, showed that the proportion of the variance explained by this effect is recognised as 
environmental variance (which explains why the quality of predicted additive effects was not hindered 
if dominance is not fitted). The data used as the training population is adequate enough to detect 
dominance (i.e. see the estimated for dominance variance in Table 1), so the explanation seems to be 
more a true lack of confounding between the effects rather than a lack of information in the data. 
Whilst the better separation of additive and dominance effect may be an added benefit from the 
genomic prediction, the experimental design may also have some influence on it. The simulation 
protocol used in this study aimed at ensuring that the replicates were independent and the population 
with replicate was composed of truly unrelated animals. Further inspections may still be required to 
determine if the results (i.e. that not fitting dominance does not hinder the accuracy of additive effect) 
extrapolate to other situations with close relationships between individuals of the training population. 

 
The size of the dominance variances tested here are relatively large compared to real values commonly 
observed in commercial traits in livestock species. This suggests that perhaps, fitting dominance effect 
to improve the genomic prediction would not have a substantial impact in practical breeding 
programmes. 

 
Table 2. Accuracy of the genomic estimated additive breeding value for the scenarios where the true 
value for 𝜎2 is 10, 20 and 30. Estimates were obtained with GBLUP with three model of analyses, using 
the variance calculated from the REML analysis or the true values used to simulate the data. 

 
 Individuals with records Individuals without records 

 Model of analysis Model of analysis 

 
True 

𝜎2 
𝑑 

 
Additive 

only 

Dominance 

 
breeding value 

parameterisation 

Dominance 

 
genotypic 

parameterisation 

 
Additive 

only 

Dominance 

 
breeding value 

parameterisation 

Dominance 

 
genotypic 

parameterisation 

GBLUP using variance component estimated with REML analysis 

10 0.509 0.509 0.509 0.302 0.302 0.304 

20 0.485 0.485 0.483 0.282 0.282 0.282 
30 0.467 0.467 0.466 0.273 0.272 0.269 

GBLUP using the true variance 

10 0.510 0.510 0.509 0.303 0.302 0.302 

20 0.486 0.486 0.484 0.282 0.283 0.282 
30 0.486 0.486 0.484 0.282 0.283 0.282 

 

 

3.3 Accounting for population divergence in the GRM, when predicting across 

populations 

The objective here was to assess the impact on the accuracy of across population genomic prediction 
when modifying the GRM to account for divergence between populations. 
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The simulation mimics scenarios with two populations with an ‘observable’ level of genetic divergence 
(labelled as the “reference” and the “divergent” populations). Genomic prediction analyses are carried 
out with a training set composed of individuals from the reference population and the candidates are 
from both populations. The scenarios considered here varied on the degree of genetic divergence 
between the two populations. 

 
A total of 1,500 individuals belonging to the reference population (i.e. 1,000 to be training individuals 
and 500 to be candidates) were sampled from their gene pool and 500 individuals from the divergent 
population. The genetic effects for all individuals and the phenotypes for the training group were 
simulated as described above assuming to be fully additive genetic model with 𝜎2 = 20 and 𝜎2 = 80. 

𝑎 𝑒 
 

Four different GBLUP evaluations were performed varying on the GRM to account for the population 
divergence: 

 
(i) GBLUPO: divergence is not accounted for and GRM was calculated assuming a single population 

using the overall allele frequency in both populations. 
(ii) GBLUPP: divergence is accounted by calculating the genotype score of individuals using the 

specific allele frequency of their own population. 
(iii) GBLUPW1: same as GBLUPP but also using the rolling correlation of the persistence of linkage 

phase as weighing factor (see above). 
(iv) GBLUPW2: as GBLUPW1 but using the square of the correlation as the weighing factor. 

 
Additionally, the genomic evaluation analyses were carried out using the true heritability or the 
estimate from a REML analysis on the reference animals. 

 
The results shown are the average of 200 replicates for each scenario. 

 
A total of twelve divergent populations were considered here. Eleven populations were created with 
different degree of genetic differentiation from the reference population (sorted according to their 
degree of differentiation and labelled from A to K). The extra twelfth population (labelled as AxJ) was 
simulated by combining the even chromosomes from population A (closely related to the reference 
one) and the uneven chromosomes from population J (very distant from the reference one). This latter 
population is unrealistic, but it helps to understand the impact of the different approaches suggested 
to account for the divergence in the genomic evaluation across populations. The degree of 
differentiation of these populations is observed in Figure 1, measured as their average persistence of 
linkage phase with the reference population. 
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Figure 1. Persistence of linkage phase between the reference population and the 12 divergent 
populations (labelled from A to K, plus AxJ). The linkage phase parameter is the mean of the rolling 
correlation for all 26,000 SNPs in the SNP chip array, the value shown in the X axis is the average of 200 
replicates. 

 
 

 
The accuracies of the GEBVs obtained when evaluations were carried out using the REML estimates on 
the training set are shown in Figure 2. The results when using the true variance are very similar to those 
found when using the REML estimates, so they are not shown here. The accuracy of the phenotyped 
individuals included in the training group was 0.497 (average over 2,400 replicates) and 
0.272 for unphenotyped candidates from the same reference population as the training one, 
representing an approximately 45% drop in accuracy when the individuals have no available phenotype 
at the time of the evaluation. As expected the accuracy for candidates from the divergent population 
decreased according to their degree of divergence. When their GEBVs were calculated without 
accounting for them to be from different populations (i.e. GBLUPO), their accuracy ranged from 0.06 
to 0.19, equivalent to 24% to 72% of the accuracy observed in unphenotyped candidates from the 
same population as the training set. 
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Figure 2. Accuracy of the GEBVs for training (blue line) and candidates (red line) in the reference 
population and candidates from the twelve divergent populations (bars) estimated using the four 
GBLUP approaches varying on their GRM to account for population divergence. 

 
 

 
The approaches modifying the GRM to take into account the population divergence (i.e. GBLUPP, 
GBLUPW1, GBLUPW2) have low to moderate benefit in improving the accuracy. Calculating the GRM 
using population specific allele frequencies (GBLUPP) increases the accuracy by 7.4% relative to 
GBLUPO, ranging between 3.4% and 16.2% across all the divergent populations. However, the scenarios 
with the highest advantage percentage-wise may overemphasize the benefit of GBLUPP as they are 
associated to distantly related populations where the performance of GBLUPO is low (hence, the 
relative advantage appears to be higher). Overall, the extra accuracy of GBLUPP over GBLUPO in 
absolute magnitude ranges between 0.006 and 0.012. 

 
The accuracies observed with GBLUPW1 and GBLUPW2 were slightly lower than that achieved with 
GBLUPP, though they were always higher than with GBLUPO. This is rather surprising as GBLUPW1 and 
GBLUPW2 also account for the difference in frequencies as with GBLUPP, so the net effect from 
accounting for the persistence of linkage phase between populations was negative or at best none at 
all (the reduction in accuracy relative to GBLUPP was very small, ranging between 0.0013 and 0.0041, 
so they should be probably considered as zero). 

 
Genomic prediction methods estimate the effect of neutral SNPs with the intention to capture the 
effect of linked QTLs which are in LD with them. The magnitude and sign of the estimated effects for 
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the neutral SNPs vary according to the strength and pattern of linkage phases between SNPs and linked 
QTLs. Then, the success of these methods to accurate predict the genetic breeding values of candidates 
depends on the predicted candidate having similar LD pattern to the training group where the SNP 
effects were calculated. Using such SNP estimates in another population with very different LD pattern 
would also be adding some extra noise to the estimated breeding values. 

 
Intuitively, using the correlation of persistence of linkage phase to weight the SNP contribution on 
relationships between individuals across populations, would control this noise. It would not add further 
information but it should reduce the noise so the prediction should improve (relative to when not using 
weights). The fact that the accuracy does not improve, when accounting for the linkage phase, means 
that the problem of poor predictions on distantly related individuals is probably related to the amount 
of information available, rather than to the amount which is retrievable. Hence, the solution to 
improve poor predictions of some distant candidates may only be achieved by extending the training 
set with individuals more related to them. A training set with a mixture of individual from both 
populations has been frequently shown to be a better solution (e.g. RIGGIO et al. 2014). 

 
The results from this study suggest that the correlation of persistence of linkage phase may have 
limited value (or none) to improve prediction across populations. However, it can provide a measure 
indicating the degree of genetic divergence which can be allowed (between training and candidates) 
before the prediction deteriorates below a given threshold. For instance, the results on the accuracies 
observed in the populations and SNP density studied here showed that the persistence of linkage phase 
between training and the distant candidate sets should have a correlation of circa 0.75 in order to 
achieve an accuracy which is, at least, half the accuracy when predicting in the same population (Figure 
3). This parameter will be of great value to determine when the training set (or the SNP chip) needs to 
be updated to ensure that a minimum accuracy is to be achieved. 

 
In conclusions, the approaches modifying the GRM to account for the degree of divergence between 
populations showed little impact of the prediction accuracy for distantly related populations. 
Adjustment to use population specific allele frequencies has a small benefit on the accuracy, but the 
approach to account for the degree of persistence of the linkage phase yielded no benefit at all. 
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Figure 3. Effect of the persistence of linkage phase between the training and the candidate sets on the 
accuracy of the GEBV of candidates from other populations. The X axis shows the ratio of the GEBV 
accuracy in distant candidates over the accuracy in candidates from the same population as the training 
set. The points outside the line are the values for the population AxJ. 

 
 
 
 
 

4 Metafounders to improve across population prediction with ssGBLUP 

The following section provides a description of the use of metafounders to improve compatibility of 
the NRM and GRM due to absence of pedigree information across populations. For a more detailed 
explanation of this metafounders approach as well as it theoretical support, see LEGARRA et al. (2015) 
and GARCIA-BACCINO et al. (2017). 

 
The main feature of of ssGBLUP is its ability to incorporate genotyped and ungenotyped individuals in 
a single analysis by using a relationship matrix (H), which combines the NRM with the GRM. To avoid 
the introduction of bias it requires that both the NRM and the GRM are at the same scale (for the 
subset of genotyped individuals), so the GRM is rescaled prior combining them to create H (VITEZICA et 
al. 2011; LEGARRA et al. 2014). However, when considering multiple populations, there is an extra 
complexity that populations are generally not linked via pedigree information, so the NRM assigns zero 
relationship between individuals of different populations. However, the genomic information will allow 
to estimate a non-zero degree of relatedness between individuals from different populations, 
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which will be used during the across population prediction. Such inconsistence between the NRM and 
GRM would have a negative impact on the prediction across populations. Modifying the GRM to 
account for this inconsistence would remove useful information affecting the estimates, so instead the 
NRM needs to be modified. 

 
LEGARRA et al. (2015) proposed the method of metafounders for enhancing the NRM to ‘fill the gap’ on 
relationship when pedigree information is missing (within or across populations). Let consider a group 
of individuals with missing parent information, then a pseudo-individual labelled as metafounder is 
assumed such as that all individuals in the group are offspring of this metafounder via self-mating (i.e. 
the metafounder is the sire and dam for all individuals). By adjusting the self-relationship of the 
metafounder (𝛾) it allows to assign a given degree of relationship among all individuals of the group. 
This self-relationship in the metafounders generally implies a negative inbreeding (i.e. 𝛾 = 1 + 𝑓) and 
when 𝑓 = -1 (i.e 𝛾=0) it is equivalent to the model assuming genetic groups (or unknown parent groups) 
which generally is used to correct for difference in mean of the group of individuals with missing parent 
information. The metafounder approach can be extended to consider several groups, each associated 
to different metafounders, with their relationship among themselves defining the degree of 
relatedness between individuals within groups and across them. Hence, for the specific case of multi- 
population ssGBLUP, the metafounders would allow to have non-zero degree of relatedness across 
populations in the NRM, making it compatible with the GRM. 

 
Under the metafounder representation, the enhanced NRM can be calculated using the tabular 
method or its fast inversion using Henderson’s method (HENDERSON 1976; QUAAS 1976). However, 
before this can be done, it does requires to calculate the matrix 𝚪, containing the relationship among 
metafounders. This matrix 𝚪 can be obtained using marker information with each element being equal 
to 8 times the covariance between the marker frequencies in their base populations in question 
(LEGARRA et al. 2015). 

 
Hence, the main task when implementing metafounders in ssGBLUP is the estimation of the SNP allele 
frequencies for the different groups associated to metafounders. GARCIA-BACCINO et al. (2017) 
compared four different methods to calculate these frequencies based on the genotype information 
of the sampled animals to be included in the analysis. They concluded that the most reliable methods 
are those accounting for (pedigree) relatedness between the genotyped animals. 

 
Studies testing the benefit of including metafounders in the ssGBLUP evaluation have shown a 
significant improvement of the accuracy of the estimates. The beneficial effect of adding metafounders 
has been observed even when assuming one single metafounder in a single population with complete 
pedigree information (GARCIA-BACCINO et al. 2017). Furthermore, situations with larger degree of 
missing pedigree information has shown that ssGBLUP with metafounders is more accurate and has 
less bias than when using unknown parent group (MACEDO et al. 2020). Hence, ssGBLUP for predicting 
across population should benefit from the inclusion of metafounders, as it will allow to account for the 
unrecorded relationship between the populations due to the lack of pedigree information linking them. 

 

4.1 Resources 

Free software (binary files) can be found in http://nce.ads.uga.edu/wiki/doku.php?id=distribution 
 

A detailed tutorial with example files can be found in http://genoweb.toulouse.inra.fr/~ale- 
garra/ThreeWayDist/ 

http://nce.ads.uga.edu/wiki/doku.php?id=distribution
http://genoweb.toulouse.inra.fr/~alegarra/ThreeWayDist/
http://genoweb.toulouse.inra.fr/~alegarra/ThreeWayDist/
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Comprehensive notes can be found in http://genoweb.toulouse.inra.fr/~alegarra and 
http://nce.ads.uga.edu/wiki/doku.php?id=course_information_-_uga_2018 

 

5 Conclusions 

The results from the simulation studies showed little or no benefit in the additive GEBV when 

accounting for dominance effects into the model of analysis. The results from the REML analyses 

suggested that the additive and dominance effects have little confounding, which explain why 

accounting for dominance as a nuisance factor did not affect the predictions. Similarly, modification of 

the GRM to account for divergence between populations has a modest effect for improving prediction 

across populations. Within the ssGBLUP framework, the method of metafounders to enhance the NRM 

has a positive impact on the accuracy of the GEBV. The beneficial effect can be observed even in 

situations with a single population. Because relationships across populations are generally not 

available/recorded, the use of Metafounders to calculate these unknown values has a potential to 

improve the prediction across populations. 
 

6 Deviations or delays 

There was a delay of six months. This delay was due to COVID, however it is considered a minor delay which 
should not impact any further work still to be done in WP5.  
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