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About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

 SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges.  

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency.  
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1 Summary 

This document presents a report on several aspects that still need to be sorted out before 

Optimum Contribution Selection (OCS) can be fully integrated with genomic data to enhance 

its potential to manage the genetic diversity of commercial populations.  We derived a new 

formulation of the OCS which may improve its practical properties.  The value of the genomic 

relationship matrices as indicator of the genetic diversity was assessed.  We showed that some 

of the genomic relationship matrices (GRMs) may have some properties which are 

inconsistent with our understanding of how genetic diversity arises. Finally, we quantified the 

trade-off between extending the OCS to improve the management of genetic diversity with 

any potential loss of response to selection.  We showed that the improved approach has little 

impact on the genetic gain of the trait under selection. 

 

 

2 Introduction 

Genomic Prediction methods use high dense genotyping in the genetic evaluation to improve 
the accuracy of the predictions. The most popular method is the genomic Best Linear Unbiased 
predictor (GBLUP) (GARRICK 2007; VANRADEN 2008) as it has the practical convenience that its 
implementation is similar to traditional pedigree-based BLUP, but the Numerator Relationship 
Matrix (NRM) is replaced by a Genomic Relationship Matrix (GRM) calculated with dense 
genotype information. The highly beneficial effect of genomic selection (GS) on improving 
accuracy of genetic predictions has prompted its rapid uptake by commercial breeding 
companies across most livestock species. However, the higher accuracy from GS is likely to 
promote a higher rate of inbreeding, which may lead to greater loss of genetic variance, 
inbreeding depression and increased accumulation of deleterious mutations.  Nevertheless, 
the rapid integration of genomic prediction is also bringing some opportunities for better 
management of the genetic diversity in commercial populations. 

An effective approach to control the rate of inbreeding is Optimum Contribution Selection 

(OCS) which maximises genetic progress while controlling the rate of inbreeding to a given 

value preset by the breeder. OCS can benefit from the availability of genomic data, more 

specifically from the calculation of better relationship matrices calculated using dense SNP 

genotyping arrays (i.e., GRM) that can enhance OCS, resulting in better control of inbreeding 

and greater genetic gain. Additionally, genomic information offers opportunities to go beyond 

the standard scope of OCS towards a more customised approach to manage genetic diversity. 

SNP information can be used to calculate GRMs specific for a region of the genome and then 

OCS can be applied including separate restrictions on the rate of inbreeding of these regions. 

This will allow a prioritisation of areas of the genome that need to have a stronger control, 

and thereby better control of the genetic diversity in them. All of these opportunities arise 
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from the availability of genomic data, which have been collected for the only purpose of 

performing genetic evaluation.  

However, before the genomic data can be used to enhance the full potential of OCS, there are 

still some issues which need to be sorted out. Although several methods for performing OCS 

have been proposed (MEUWISSEN 1997; KINGHORN et al. 2002; PONG-WONG AND WOOLLIAMS 2007; 

PONG-WONG AND WOOLLIAMS 2018), there is still room for improvement in order to make them 

more computationally efficient or more flexible to handle the new opportunities arising in this 

area.  Additionally, it is a general belief that the GRMs are better estimates of the relationship 

matrices as they improve the accuracy of genomic evaluation, and several methods to 

calculate them are available. But, although they have proven to be useful for genomic 

prediction, their value as indicator of genetic relationships among individuals is more 

uncertain as their usage can lead to inconsistent estimates of the relationship between 

individuals. Finally, the newly extension of the OCS to enhance its potential to manage 

diversity may have some conflict with genetic gain and reduce efficacy of selection to produce 

better animals. 

In this report, we performed several studies to address these issues which may affect the 

integration of OCS with genomic data. We studied a new reformulation of the OCS with the 

aim to produce more algorithms with better practical properties.  We also studied the value 

of the GRM as an indicator of genomic relationship between the individuals of the population.  

Finally, we quantified the trade-off, which may be between better management of the genetic 

diversity and genetic gain.  

 

 

3 Extending development of optimum contribution selection to 

manage genetic diversity 

3.1 Background 

Optimum contribution selection (OCS) is an effective tool for controlling the rate at which 

coancestry increases in close managed populations. However, despite the potential benefit of 

OCS, its practical uptake remains low. A reason for this is the limited number of methods 

implementing OCS and their scope to accommodate for practical conditions. OCS has been 

implemented using four different approaches based on: (i) relaxed parameter space 

(MEUWISSEN 1997), (ii) evolutionary algorithms (KINGHORN et al. 2002), (iii) semidefinite 

programming (PONG-WONG AND WOOLLIAMS 2007) and (iv) quadratic programming (PONG-WONG 

AND WOOLLIAMS 2018). The method based on relaxed parameter space (also known as the 

Lagrange multiplier method) is fast but the way it deals with the constraints to ensure that the 

solutions are valid may result in suboptimal solutions (i.e. the solution may not be the best). 

Additionally, this method allows for only one constraint on coancestry and its modification to 

add more than one is not trivial. Methods based on evolutionary algorithms are flexible but 

their convergence cannot be ensured/tested. The methods based on semidefinite 
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programming and quadratic programming guarantee that the solution is optimum (i.e. the 

solution is the best, given the constraints) and they are flexible allowing to accommodate for 

multiple constraints on inbreeding. The computational efficiency of the OCS implementation 

using the quadratic programming approach can be substantially superior to when using 

semidefinite programming, especially when several constraints in coancestry are to be 

included in the OCS. 

Whilst the quadratic programming is the most desirable approach for implementing the OCS 

due to its optimality properties and its computational efficiency, there are limitations which 

still require to be sorted out, one of which is how the constraint in minimum contribution is 

handled.  

The desired behaviour of the OCS when including constraint on minimum contribution would 

be for the optimisation to determine if a candidate is selected or not, and being assigned a 

contribution of at least a given magnitude if selected. Practical examples for having a 

restriction as above would be the case when (i) female candidates contribute to only one 

offspring/litter in the next generation, (ii) having too few offspring allocated to a male being 

impractical or (iii) mating allocation to maximise heterozygosity in the offspring. However such 

assumption on minimum contribution implies that the space of valid contributions would be 

discontinuous (i.e. 0 if not selected, and within the range [minval: maxval] if selected).  

However, this discontinuity in the space of valid solution cannot be handled by the method 

proposed by PONG-WONG AND WOOLLIAMS (2018) and the inclusion of a constraint in minimum 

contribution would mean that the candidate will always be selected and given a contribution 

of at least the minimum assigned. This problem can be overcome by using an approach similar 

to the one implemented in the OCS method proposed by MEUWISSEN (1997). The contributions 

are optimised without restriction on minimum contribution, and if the magnitude of optimised 

contributions for some candidates are lower than their minimum required, these 

contributions are fixed to 0 or its minimum based on some ad hoc rules and the optimisation 

is redone with the remaining candidates. Such recurrent way of re-optimising the contribution 

when they are outside the valid range of a constraint has shown to lead to suboptimal 

solutions which may not necessarily maximise the objective function (PONG-WONG AND 

WOOLLIAMS 2007).  

Here we proposed a novel formulation of the OCS problem based on mixed integer 

programming (MIP) in order to account for the discontinuity of the valid parameter space. 

 

3.2 Theory of optimum contribution and notation 

Let n candidates be available for selection and their sex described with the incidence vectors 

s and d, where si = 1 if candidate i is a male and 0 otherwise and di = 1- si. Their estimated 

breeding values are in the vector g. Let c be the vector of the candidates’ genetic 

contributions, where ci represents half the proportion of offspring from candidate i. The values 

for ci ranges between [0:0.5] and the sum of contributions with a sex group sums to 0.5. 
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The expected genetic and inbreeding level in the offspring generation is equal to c’g and 

c’Gc/2, respectively (WOOLLIAMS AND THOMSON 1994), where G is the relationship matrix for the 

group of candidates, which can be estimated using either pedigree, high dense marker 

information or both (NEJATI-JAVAREMI et al. 1997; VILLANUEVA et al. 2005; VANRADEN 2008). 

Furthermore, genomic information also allows to calculate relationship matrices for specific 

regions of the genome so their expected inbreeding can be estimated for the region.  

Hence, OCS aims at optimising the candidates’ genetic contribution to maximise genetic 

response while restricting the average level of inbreeding in the offspring generation to 

increase at a rate lower or equal to a value preset by the breeder (MEUWISSEN 1997; GRUNDY et 

al. 1998). In genetic conservation programmes, the OCS is implemented by replacing the 

objective function to maximise genetic gain by one which minimises the average loss of 

genetic diversity in the population (e.g. (CARA et al. 2011)). Furthermore, as G can be calculated 

at specific regions of the genome, the OCS can be implemented to include separate 

restrictions on the rate of inbreeding of these regions. This would allow for a more customised 

approach to manage genetic diversity prioritizing areas of the genome which require stronger 

control of the remaining diversity (GÓMEZ-ROMANO et al. 2016).  

Following GÓMEZ-ROMANO et al. (2016) a general OCS formulation considering the genetic 

diversity of several regions of the genome separately would be the optimisation of c to: 

Minimise: ℎ(𝐜)            (1) 

s.t:  𝐬′𝐜 = 0.5 

  𝐝′𝐜 = 0.5 

  𝐜 ≥ 𝐦 

 𝐜 ≤ 𝐦 

   
𝐜′𝐆𝒋𝐜

𝟐
≤ 𝐹𝒋

∗, 𝑗 = 1, 𝑝 

 

where ℎ(𝐜) is either -c’g or c’Gc/2, when the goal is to maximise genetic gain or minimise a 

given coancestry (overall or a specific region), respectively. The first two restrictions ensure 

that the contribution within sex group sums to 0.5; the next two imposes the restriction on 

the candidates’ minimum (𝐦) and maximum (𝐦) contribution; and the last ones are 

restrictions on the average coancestry to be applied separately to p different regions of the 

genome (and it may include the average across the whole region), where 𝐆𝒋 is the relationship 

for region j and F𝑗
∗ is its maximum average coancestry to be allowed.  
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3.3 A quadratic programming approach to OCS 

PONG-WONG AND WOOLLIAMS (2018) showed that the OCS problem with several restrictions of 

the rate of inbreeding as described in (1) can be solved very efficiently using quadratic 

programming. The Lagrangian function ℒ(𝐜, 𝜆𝑠, 𝜆𝑑, 𝝀𝒎, 𝝀𝒎, 𝝀𝑗) associated to (1) is: 

ℒ(𝐜, 𝜆𝑠, 𝜆𝑑 , 𝝀𝒎, 𝝀𝒎, 𝝀𝑗) = ℎ(𝐜) − 𝜆𝑠(𝐬′𝐜 − 0.5) − 𝜆𝑑(𝐝′𝐜 − 0.5) − 𝝀𝒎
′ (𝐜 − 𝒎) + 𝝀𝒎

′ (𝐜 −

𝒎) + ∑ 𝜆𝑗(𝐜′𝐆𝒋𝐜/2 − F𝒋
∗)𝑝

𝑗=1         (2) 

 

where 𝜆𝑠, 𝜆𝑑, 𝝀𝒎, 𝝀𝒎, 𝝀𝑗  are Lagrangian multipliers, with size 1, 1, n, n, and p, respectively. If 

minimum and maximum contribution are not constrained, they are removed from the 

problem and the fourth and fifth terms of ℒ(𝐜, 𝜆𝑠, 𝜆𝑑, 𝝀𝒎, 𝝀𝒎, 𝝀𝑗) disappears. 

Hence, the Karush-Kuhn-Tucker (KKT) optimality conditions for (1) are: 

∇𝐜ℎ(𝐜) −  𝜆𝑠𝐬 −  𝜆𝑑𝐝 − 𝝀𝒎 +  𝝀𝒎 + Σ𝑗=1
𝑝 (𝜆𝑗𝐆𝒋𝐜) = 𝟎

0.5 − 𝐬′𝐜 = 0
0.5 − 𝐝′𝐜 = 0

𝐲𝒎 − 𝐜 + 𝐦 = 𝟎

𝐲𝒎 + 𝐜 − 𝐦 = 𝟎

[𝒚𝑗 + 𝐜′𝐆𝒋𝐜/2 − 𝐹𝒋
∗] = 0𝑗 , 𝑗 = 1, 𝑝

𝚲𝒎𝐘𝒎𝐞 = 𝟎

𝚲𝒎𝐘𝒎𝐞 = 𝟎
𝚲𝒋𝐘𝐣𝐞 = 𝟎

    (3) 

 

with 𝝀𝒎, 𝝀𝒎, 𝝀𝑗, 𝐲𝒎, 𝐲𝒎, 𝒚𝑗 are ≥0. The vectors 𝐲𝒎, 𝐲𝒎 and 𝐲𝑗 are slack variables associated 

to the inequality constraints, 𝚲𝒙 and 𝐘𝒙 are diagonal matrices containing the values of 𝝀𝒙 and 

𝒚𝒙 in their diagonal and e is a vector of ones.  

Defining R(𝛉) to be the nine LHS terms of the KKT optimality conditions, the optimum solution 

for (1) is the roots of R(𝛉), and it may be searched iteratively using Newton-Raphson (NR). 

However, the standard NR approach may lead to unfeasible solutions not fulfilling one or more 

of the restrictions, so PONG-WONG AND WOOLLIAMS (2018) proposed to use an interior point 

algorithm based on the Mehrotra’s predictor-corrector algorithm to solve (1). Their results 

showed that such approach is computationally efficient as well as it leads to the optimum 

solution given the objective function. 
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3.4 A mixed integer programming formulation of the OCS to better account the 

constraint in minimum contribution 

3.4.1 Algorithm to maximise genetic gain/genetic diversity accounting for several restriction 

on coancestry 

As stated before, adding a restriction on minimum contribution in (1) assumes that the 

candidate will be selected. A general assumption for the restriction on 𝐦, would be for the 

optimisation: (i) to determine if a candidate is to be selected or not; and (ii) for those which 

end being selected, to assign a contribution greater or equal than 𝑚𝑖 (i.e. assuming that the 

space of valid contribution for a candidate is discontinuous being: 0 if not selected, and a value 

in the range [𝑚𝑖, 𝑚𝑖] if selected). 

To do so, we introduce a new set of binary variables in vector 𝐜̃ indicating the selection status 

for each candidate, where c̃𝑖 is equal to 1 if individual i is selected as parent (i.e. ci >0) and 0 

otherwise (i.e. ci =0). Then the equations representing the restrictions on minimum and 

maximum contribution for candidate i would be: 𝑐𝑖 ≥ 𝑚𝑖 ∗ c̃𝑖  and 𝑐𝑖 ≤ c̃𝑖 ∗  𝑚𝑖. Because c̃𝑖 

takes values 0 or 1, the minimum and maximum contribution would be 0 when the candidate 

is not selected (i.e. c̃𝑖=0), and between [𝑚𝑖 , 𝑚𝑖] if selected (i.e. c̃𝑖=1).  Additionally to ensure 

that 𝑐𝑖 takes value of 0 or 1, an additional constraint is added as: 𝑐𝑖 ∗ (𝑐𝑖 − 1) = 0. 

 

Hence the MIP formulation for the OCS would the optimisation of (𝐜, 𝐜̃) to: 

Minimise: ℎ(𝐜)            (4) 

s.t:  𝐬′𝐜 = 0.5 

  𝐝′𝐜 = 0.5 

 𝐜̃ ∗ (𝐂̃ − 𝐈) = 𝟎 

  𝐜 ≥ 𝐦𝐂̃ 

 𝐜 ≤ 𝐦𝐂̃ 

 
𝐜′𝐆𝒋𝐜

𝟐
≤ 𝐹𝒋

∗, 𝑗 = 1, 𝑝 

where 𝐂̃  is a diagonal matrix where its diagonal values are 𝐜̃. The third constraint is a new one 

to ensure that the solution of 𝐜̃ is binary. 

 

The Lagrangian function for (4) is: 

ℒ(𝐜, 𝐜̃, 𝜆𝑠, 𝜆𝑑, 𝝀𝐜̃, 𝝀𝒎, 𝝀𝒎, 𝜆𝑗) = ℎ(𝐜) − 𝜆𝑠(𝐬′𝐜 − 0.5) − 𝜆𝑑(𝐝′𝐜 − 0.5) −  𝐜̃′(𝐂̃ − 𝐈)𝝀𝐜̃ −

𝝀𝒖
′ (𝐜 − 𝐦𝐂̃) + 𝝀𝒖

′ (𝐜 − 𝐦𝐂̃) + ∑ 𝜆𝑗(𝐜′𝐆𝒋𝐜/2 − F𝒋
∗)𝑝

𝑗=1   
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Hence the KKT conditions for optimality are: 

∇𝐜ℒ(𝐜, 𝐜̃, 𝜆𝑠, 𝜆𝑑, 𝝀𝐜̃, 𝝀𝒎, 𝝀𝒎, 𝜆𝑗) = ∇𝐜ℎ(𝐜) − 𝜆𝑠𝐬 −  𝜆𝑑𝐝 − 𝝀𝒖 +  𝝀𝒖 + Σ𝑗=1
𝑝

(𝜆𝑗𝐆𝒋𝐜) = 𝟎

∇𝐜̃ℒ(𝐜, 𝐜̃, 𝜆𝑠, 𝜆𝑑, 𝝀𝐜̃, 𝝀𝒎, 𝝀𝒎, 𝜆𝑗) = − (2𝐂̃ − 𝐈)𝛌𝐜̃ + 𝚲𝒎𝐮 − 𝚲𝒎𝐮 = 𝟎

0.5 − 𝐬′𝐜 = 0
0.5 − 𝐝′𝐜 = 0

−(𝐂̃ − 𝐈)𝐜̃ = 𝟎

𝐲𝒎 − 𝐜 + 𝐮𝐂̃ = 𝟎

𝐲𝒎 + 𝐜 − 𝐮𝐂̃ = 𝟎

Σ𝑗=1
𝑝

(𝒚𝑗 + 𝐜′𝐆𝒋𝐜/2 − 2F𝒋
∗) = 0𝑗, 𝑗 = 1, 𝑝

(𝜆𝑚 ∗ 𝑦𝑚)
𝑖

= 0𝑖, 𝑖 = 1, 𝑛

(𝜆𝑚 ∗ 𝑦𝑚)𝑖 = 0𝑖, 𝑖 = 1, 𝑛

(𝜆𝑗 ∗ 𝑦𝑗) = 0𝑗, 𝑗 = 1, 𝑝

(𝝀𝒎, 𝒚𝒎) ≥ 𝟎

(𝝀𝒎, 𝒚𝒎) ≥ 𝟎

(𝜆𝑗, 𝑦𝑗) ≥ 0, 𝑗 = 1, 𝑝

 

where the 𝝀𝒙, and  𝐲𝒙 are the Lagrangian multipliers and slack variables similar as in the case 

of OCS (1). 

 

3.4.2 Algorithm for optimising mating to maximise heterozygosity/minimise coancestry  

Similarly, the MIP approach can be used to optimise mating strategies to maximise 

heterozygosity (given that the candidates have been selected and their contributions 

assigned). 

Let assume 𝑛𝑠 and 𝑛𝑑 being the number of selected males and females, so the number of 

possible matings is 𝑛𝑚 = 𝑛𝑠 ∗ 𝑛𝑑. The number of matings needed for each candidate is 

already assigned and stored in the vector 𝐨. The variable m is a vector of size 𝑛𝑚 with row ij 

containing the mating status between male i and female j (1 if assigned, and 0 otherwise). P is 

an incidence matrix (size (𝑛𝑚 x (𝑛𝑠 + 𝑛𝑑)) indicating the male and female which are involved 

in a given mating. Finally, 𝐠 is a vector with row ij containing the expected homozygosity or 

average coancestry of offspring. 

Hence, the optimisation of the mating to increase heterozygosity in the offspring can be 

formulated as the optimisation of m to:  

minimise 𝐠′𝐦        (5) 

s.t.  𝐏′𝐦 = 𝐨  

 𝐦 ∗ (𝐌 − 𝐈) = 𝟎 

where 𝐌 is a diagonal matrix with the values of its diagonal being 𝐦. The first restriction 

ensures that the optimisation assigns the correct number of mating expected for each 

candidate, and the second is to force binary (0/1) solution for 𝐦. 
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3.4.3 Implementation issues and final remarks 

The extension of the quadratic programming provides a more versatile reformulation of the 

OCS problem and it would facilitate its practical implementation in commercial populations. 

However, while the inclusion of integer variables can be easily formulated as a quadratic 

programming, the solving of such problem are less trivial and finding efficient algorithms to 

ensure convergence to the true optimum is still an issue within researchers in the area of 

optimisation. Probably the IMP OCS proposed here may be of practical use until a stable 

approach to optimise problem with integer solutions is implemented.   

 

 

4 The value of genomic relationship matrices to estimate levels of 

inbreeding 

4.1 Background 

The beneficial effect of using genomic information in the genetic prediction to improve the 

accuracy of the genomic estimated breeding values (GEBV) has prompted a rapid intake of the 

methodology across most commercial livestock species. Genomic information is incorporated 

in the evaluation through the genomic relation matrix (GRM), calculated with genomic 

information, and used it to replace the Numerator Relationship Matrix (NRM) in the standard 

BLUP analysis. Hence, GRMs are believed to be better estimate of the true relationships 

among individuals, and given that the diagonals of the NRM are equal to 1 plus the inbreeding 

coefficients for the corresponding individuals, it has been generally accepted that the 

diagonals of the GRM are 1 plus the realized inbreeding level for the corresponding individuals. 

However, there are several methods for calculating GRM (e.g. (LI AND HORVITZ 1953; VANRADEN 

2008; YANG et al. 2011)), and they can result in very different outcomes and the correlations 

between these estimators vary greatly and can even be negative (e.g. (ZHANG et al. 2015; 

KARDOS et al. 2016)). Thus, there is still an unresolved debate on which are the best measures 

of inbreeding when estimated using genomic information.  

Here, we present a summary of the study carried out to compare genomic inbreeding 

coefficients obtained from using different methods to calculate the GRM. For a more detailed 

description of the full study see the article given in appendix 1, which is already published in 

Genetic Selection Evolution (VILLANUEVA et al. 2021). 

 

4.2 Methods for calculating GRM and predictions of their expected level of inbreeding 

Here we studied the estimated genomic inbreeding of five different methods to calculate the 

GRM: 𝐹𝑁𝐸𝐽 (NEJATI-JAVAREMI et al. 1997), 𝐹𝐿&𝐻 (LI AND HORVITZ 1953), 𝐹𝑉𝑅1 (VANRADEN 2008), 𝐹𝑉𝑅2 
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(VANRADEN 2008) and 𝐹𝑌𝐴𝑁 (YANG et al. 2011). Genomic inbreeding is defined as the diagonal 

of the GRM minus one, so they can calculated as: 

𝐹𝑁𝐸𝐽 =  
∑ (∑ ∑ 𝐼𝑖𝑗𝑘

2
𝑗=1

2
𝑖=1 )/𝑆

𝑘=1 2

𝑆
− 1  

𝐹𝐿&𝐻 =
𝑆𝐹𝑁𝐸𝐽−∑ [1−2𝑝𝑘(0)(1−𝑝𝑘(0))]𝑆

𝑘=1

𝑆−∑ [1−2𝑝𝑘(0)(1−𝑝𝑘(0))]𝑆
𝑘=1

  

𝐹𝑉𝑅1 =
∑ (𝑥𝑘 − 2𝑝𝑘(0))2𝑆

𝑘=1

2 ∑ 𝑝𝑘(0)(1 − 𝑝𝑘(0))𝑆
𝑘=1

− 1 

𝐹𝑉𝑅2 =
1

𝑆
∑

(𝑥𝑘 − 2𝑝𝑘(0))2

2𝑝𝑘(0)(1 − 𝑝𝑘(0))

𝑆

𝑘=1

− 1 

𝐹𝑌𝐴𝑁 =
1

𝑆
∑

 𝑥𝑘
2 − (1 + 2𝑝𝑘(0))𝑥𝑘 + 2𝑝𝑘(0)

2

2𝑝𝑘(0)(1 − 𝑝𝑘(0))

𝑆

𝑘=1

 

where S is the number of SNPs in the chip array; 𝐼𝑖𝑗𝑘
 is the allelic similarity of alleles i and j at 

SNP k, being 1 if the individual is homozygote and 0 otherwise; 𝑥𝑘 is the genotype score at 

SNP k equal to 0, 1, 2 for genotypes AA, AB and BB, respectively; and 𝑝𝑘(0) is the frequency of 

the reference allele B, at the base reference population, 0.  

Hence, the average genomic inbreeding is a reflexion of the changes in genotype frequencies 

in the population (regardless it is due to drift or selective forces).  Then the expected average 

value can be estimated based on a single SNP model. Assuming that mating is random so 

genotype frequencies will be in HWE, the deterministic prediction of the expected average 

population genomic inbreeding time t calculated with the GRM 𝑥, (𝐸(𝐹𝑥𝑡)) is: 

 

𝐸(𝐹𝑥𝑡) = ∑ 𝑓𝑟𝑒𝑞(𝑔𝑡) ∗ 𝐹𝑥𝑔0𝑔=𝐴𝐴,𝐴𝐵,𝐵𝐵     (6) 

where 𝑓𝑟𝑒𝑞(𝑔𝑡) is the HWE frequency of genotype 𝑔 at time t; 𝐹𝑥𝑔0
 is the genomic inbreeding 

of method x, for an individual with genotype 𝑔, calculated assuming the initial allele frequency 

at the reference base population.  

Since the prediction is based on a single SNP model, 𝐹𝑉𝑅1 and 𝐹𝑉𝑅2 will have the same 

prediction.  

 

4.3 Expected genomic inbreeding as an indicator of loss of genetic variance 

Under the infinitesimal model, the average inbreeding in the population is an indicator of the 

proportion of the genetic variance loss in the population relative to the initial starting variance 

in the base population. Hence, a fully inbred population would have an inbreeding of 1 and all 

its initial genetic variance has been lost. Here we assessed the behaviour of the different 
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estimator of genomic inbreeding as an indicator of change in genetic variance in the 

population.  

Assuming HWE genotype frequency, the genetic variance accounted by a SNP will be 2p(1-p), 

so the maximum variance would be when the SNP allele frequency is 0.5 and it declines as the 

frequency deviates from 0.5. Then, the change in genetic variance across time is a direct 

reflexion of changes in the SNP allele frequencies, with the genetic variance decreasing as the 

minor allele frequency becomes smaller but increasing if the frequency is moved closer 

towards 0.5. Hence, if the genomic inbreeding is an indicator of change in  genetic variance, 

the average genomic inbreeding should increase as the allele frequencies are moved towards 

zero or one (i.e, starting MAF0 > final MAFt) and becoming 1 when the SNP is fixed (indicating 

that all the starting genetic variance was lost). Conversely, when the allele is moved closer to 

0.5, an increase in genetic variance is expected so the genomic inbreeding should become 

negative (a situation which does not happen when the inbreeding is calculated using pedigree 

information, assuming the infinitesimal model). Additionally, as inbreeding indicates change 

in variance relative to the reference base population, the upper limit of genomic inbreeding 

should be 1 (as it is not possible to lose more than 100% the starting variance) but its lower 

limit may be –α, reflecting that the starting allele frequency could have been infinitesimally 

small and it was moved towards 0.5 at time t (i.e. it is possible to gain an infinitesimal large 

proportion of initial variance if it started being very small).  

Here, the value of the different estimates of genomic inbreeding was assessed based on its 

behaviour as an indicator of change in genetic variance. For it, the expected genomic 

inbreeding was predicted using (6) across the whole range of starting frequencies (𝑝0) and the 

final frequencies at time t (𝑝𝑡).  

The prediction on the expected genomic inbreeding for three different methods for calculating 

GRM are shown in Figure 1. The heatmap showed that the E(𝐹𝐿&𝐻) can take values between 

]–α , 1], with positive values of F occurring when MAF0 > MAFt and negative when MAFt is 

driven towards 0.5. Hence,  𝐹𝐿&𝐻 seems to be a valid indicator of change in genetic variance.  

However, this is not the case for 𝐹𝑉𝑅 and 𝐹𝑌𝐴𝑁, as they may yield estimates which can be 

greater than 1. This is an invalid estimate as it is inconsistent that a population can lose more 

genetic variance than they initially started with. Additionally, 𝐹𝑌𝐴𝑁 shows that, in average, a 

population is not expected to have gain in genetic variance even when frequency is driven 

towards 0.5. 

The most striking trends are observed for 𝐹𝑉𝑅 (where the average genomic inbreeding can be 

negative, positive between [0:1] and > 1).  Firstly, E(𝐹𝑉𝑅) can be > 1, wrongly implying that the 

population has lost more variance that it initially started with. Secondly, the situations where 

E(𝐹𝑉𝑅) < 0 happen when MAF0 > MAFt (i.e. the estimate indicates that the genetic variance 

has increased, but in fact, the population is losing variance). Thirdly, a significant proportion 

of the situations when E(𝐹𝑉𝑅) > 0 occurs when the frequency has been moved towards 0.5 

(i.e. the estimate indicates that genetic variance is being lost , but in fact the genetic variance 

has increased).  Furthermore, for all situations where 𝑝𝑡 > 2*𝑝𝑜, the estimates lead to the 
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invalid result of E(𝐹𝑉𝑅) > 1 (i.e. genetic variance may be increasing but the estimate suggests 

that the population has lost even more variance than what it started with). 

The trends observed with the deterministic prediction on the different estimates of genomic 

inbreeding were validated using a real data from a small and highly inbred pig population.  The 

analysis on this population showed that for genomic regions where all SNPs were fixed (i.e. 

total loss of the genetic variance), E(𝐹𝑉𝑅) can lead to wrong conclusions that genetic variance 

is increasing. The differences in the magnitude and sign of these estimates of genomic 

inbreeding has a large impact when using them to calculate inbreeding depression.  The results 

from the real pig population showed that the estimates of inbreeding depression obtained 

with the different methods can be of opposite sign for as many as 40% of all estimates. The 

results from the real dataset can be seen in the published article given in appendix 1. 

 

 

 

Figure 1. Heatmap of the prediction on expected genomic inbreeding coefficient when using 

𝐹𝐿&𝐻, 𝐹𝑉𝑅 and 𝐹𝑌𝐴𝑁, across the whole range of starting and final allele frequencies.  

 

 

4.4 Conclusions 

Deterministic predictions of average genomic inbreeding showed that the estimates can be 

substantially different depending of the method used to calculate the GRM.  𝐹𝐿&𝐻  provided 

estimates which are consistent to what is expected given the changes in genetic variance, with 

𝐹𝐿&𝐻 < 0 when the population has gained variance and 𝐹𝐿&𝐻 > 0 when it has lost variance.  

However, this was not the case for 𝐹𝑉𝑅 and 𝐹𝑌𝐴𝑁, where estimated genomic inbreeding  

greater than one can be observed.  Moreover, for a large proportion of scenarios, 𝐹𝑉𝑅 can 
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predict that the population is gaining variance when in fact is losing or predict loss of variance 

when in fact is gaining. The conclusions were tested using real data, which confirmed the 

inconsistent estimates of genomic inbreeding observed with the deterministic predictions 

 

 

5 Changes in Allele Frequencies When Different Genomic Coancestry 

Matrices Are Used for Maintaining Genetic Diversity 

5.1 Background 

The implementation of genomic prediction to improve accuracy of the GEBVs requires a large-

scale high density genotyping in the candidates to selection. This opens a great opportunity 

for implementing an OCS, which will come at virtually no extra cost as the genomic 

information would be available.  

A genomic OCS (gOCS) would use the GRM when adding the restriction on the rate of 

inbreeding to be allowed. Several methods have been proposed to calculate GRMs (e.g.  (LI 

AND HORVITZ 1953; VANRADEN 2008; YANG et al. 2011)), which have shown great potential to 

improve the accuracy of GEBV in the genetic evaluation. However, their value to restrict rate 

of inbreeding with gOCS requires further studies.  

GÓMEZ-ROMANO et al. (2016) discussed that the GRM used in the OCS would affect the 

performance of the scheme to preserve genetic variation. After a close inspection of the 

different methods, they speculated that an OCS using the GRM calculated with the method 

proposed by LI AND HORVITZ (1953) would drive the SNPs towards intermediate gene frequency, 

whilst using a GRM calculated with the methods from VANRADEN (2008) would promote to 

maintain the original frequencies. They went further by predicting that using the GRM from  

LI AND HORVITZ (1953) would reduce the chances of fixing rare alleles as the OCS would push 

them towards more intermediate frequencies.  More recently, MORALES-GONZÁLEZ et al. (2020) 

showed that the choice of the GRM for the gOCS impacted on the selected candidates and 

their assigned contributions. More specifically, they showed that the gOCS using the LI AND 

HORVITZ (1953)’s GRM would maximise the expected heterozygosity in the offspring 

generation, compared to when using a GRM from VANRADEN (2008) or YANG et al. (2011). Such 

results are yet to be tested assuming a multiple generation scheme. 

Here, we present a summary of the study carried out to compare the behaviour of gOCS when 

using different GRM matrices.  We assessed the impact of GRM on pattern of change in gene 

frequency as an indicator of the changes in genetic variance. For a more detailed description 

of the full study see the article given in appendix 2, which it is already published in Genes 

(MORALES-GONZÁLEZ et al. 2021). 
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5.2 Methods 

A simulation study was carried out to assess the impact of the GRM used in a gOCS scheme 

aiming at maximising the maintenance of genetic diversity of a small population across 50 

generations.  

A population with a genome in linkage disequilibrium (LD) was simulated using a mutation-

drift equilibrium approach, where a population with several chromosomes with thousands of 

SNPs was allowed to evolve with mutations creating new variants and drift driving them to be 

lost/fixed or increased in frequency. After a large number of generations the population ended 

with segregating loci in LD. The population was expanded and a set of the animals were 

randomly chosen to be the base population where the conservation programme started.  

Thereafter, two sets of over 55,000 segregating SNPs were selected to be the array of 

genotyped and ungenotyped SNPs: the set of known SNPs were used to manage the 

population and the set of genotyped was used to evaluate the performance of the 

conservation scheme. 

At a given generation, OCS was applied to optimise the contribution of candidates with the 

objective of maximising the genetic variance retained in the population. The relationship 

matrix used in the OCS was a GRM calculated with either the method proposed by LI AND 

HORVITZ (1953) (SO_L&H) or with the method 2 proposed by VANRADEN (2008) (SO_VR). The 

GRM was calculated using the set of genotyped SNPs, either using all genotyped SNPs or after 

filtering for a MAF > 0.05 or MAF >0.25. The effect of the size of the managed population (n=20 

and 100) was also evaluated. The conservation programme was carried out for 50 generations. 

The criteria of comparison to evaluate the effect of the GRM used in the OCS were Kullback–

Leibler (KL) between current and initial frequency (at generation 0). Heterozygosity, 

distribution of allele frequencies at generation 50 and fixation rate were also used as criteria 

of comparison.  

 

5.3 Results 

Figure 2 shows the heterozygosity and KL deviation criterion from the conservation schemes 

using SO_L&H and SO_VR to calculate the GRM used in the OCS scheme. Overall, the 

heterozygosity tended to decrease as the generation progressed, but the reduction was at a 

much greater rate when using the SO_VR GRM. The scheme using SO_L&H with no filtering or 

filtering for MAF > 0.05 to calculate the GRM was very efficient in retaining the expected 

heterozygosity over the course of the scheme and only starting to decrease in the last third of 

the conservation programme. However, those schemes with the lowest reduction on the 

average heterozygosity also had the highest KL deviation criterion at generation 50, which 

indicates that they had the highest divergence (although their expected heterozygosity 

changes less across the scheme).  

Figure 3 and 4 show the histogram for the allele frequency at the start and at end of the 

conservation scheme (gen 0 and gen 50), calculated on the set of genotype and ungenotyped 
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SNPs, respectively. At generation 50, a larger proportion of SNPs at intermediate frequency 

(i.e. close to 0.5) was observed when using the SO_L&H GRM than when using SO_VR. This 

trend was more accentuated in the set of genotyped SNPs, which corresponds to the set used 

to calculate the GRMs. However, it is also interesting to observe that the scheme with SO_L&H 

tended to have slightly higher proportion of SNPs which were fixed.  

The results from this study tend to confirm the speculation from GÓMEZ-ROMANO et al. (2016) 

that the OCS using the SO_L&H GRM would drive SNPs towards intermediate frequencies, but 

it rejects the hypothesis that using the SO_L&H GRM reduces the chances of losing rare alleles 

due to fixation.   

 

 

 

Figure 2. Expected heterozygosity (a) and Kullback-Leibler divergence (b) for unobserved loci 

across generations when contributions are optimised using Li and Horvitz (SO_LH) and 

VanRaden (SO_VR) coancestry matrices computed with SNPs with MAF > 0.00, MAF > 0.05 

and MAF > 0.25 in a population of 100 individuals. 
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Figure 3. Histogram of allele frequencies at generation 0 and 50, for the set of genotyped SNPs 

when OCS was done using the GRM calculated with the Li and Horvitz and the VanRaden 

methods.  GRMs were also calculated using all genotyped SNPs, or those after filtering 

retaining those with MAF > 0.05 and MAF> 0.25. Results are for a population of 100 

individuals. 
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Figure 4. Histogram of allele frequencies at generation 0 and 50, for the set of genotyped SNPs 

when OCS was done using the GRM calculated with the Li and Horvitz and the VanRaden 

methods.  GRMs were also calculated using all genotyped SNPs, or those after filtering 

retaining those with MAF > 0.05 and MAF> 0.25. Results are for a population of 100 

individuals. 

 

5.4 Conclusions 

The behaviour of the OCS is affected by the choice of the GRM used to restrict the rate of 

genomic inbreeding.  The OCS using SO_L&H GRM resulted in a more divergent population, 

relative to the initial one. In average, it tends to promote SNPs to move towards intermediate 

frequency, but it does not reduce the probability of losing alleles in individual SNP with rare 

alleles.   

 

 

6 Effect of including several restriction of inbreeding on the OCS 

6.1 Background 
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The large-scale genotyping of candidates for the purpose of improving genetic evaluation, has 

opened a great opportunity for implementing a gOCS which can go beyond its original scope 

towards a more customised management of the genetic diversity (which will come at virtually 

no extra cost as the genomic information would be available). GÓMEZ-ROMANO et al. (2016) 

showed that the OCS can be extended to add separate restrictions on the rate of inbreeding 

to be allowed on different genomic regions (by using GRM specific for the regions on interest). 

Treating these regions independently in the OCS would allow to prioritise areas of the genome 

in need of a stronger control, and thereby better retention of their available genetic diversity.   

GÓMEZ-ROMANO et al. (2016) tested the impact of including several restrictions on genetic 

diversity in conservation programme where the overall objective is to maintain the overall 

genetic diversity, so the objectives and restriction were, someway, similar. Situations where 

the objective is to maximise genetic gain would probably prove to be more challenging.  

Theoretically, it is possible to use gOCS to control the ΔF at every region of the genome 

separately, but in practice, the number of separate restrictions may be more limited. Breeding 

populations, and especially those which require careful management of the genetic diversity, 

would probably be of small to medium size. Increasing the complexity of the optimisation 

procedure by adding extra restrictions, would affect the feasibility of finding valid solutions 

making the OCS fail.  In a more optimistic scenario, adding several separately constraints on 

ΔF would likely have an impact on the selection response, resulting in lower genetic gain for 

the trait under selection. 

In this study, we tested the effect of adding several separate restrictions on genetic diversity 

to the OCS, when the objective is to maximise genetic gain. 

6.2 Methods 

6.2.1 Simulation of the gene pool of the reference population in linkage disequilibrium 

The gene pool of the population to be used as reference in the genomic prediction was 
simulated by creating a founder population in LD and, thereafter, expanded it to create a 
larger population still representative of the smaller one, but with less closely related 
individuals. This final expanded gene pool population was then used to sample the population 
for each replicate.  

In the first step, the founder population in LD was simulated using a mutation-drift-equilibrium 
algorithm as suggested by MEUWISSEN et al. (2001). Briefly, an initial population of N individuals 
is allowed to reproduce, with each individual producing two offspring (one male and one 
female). Their genome is composed of several chromosomes with biallelic loci mutating at a 
given rate. As the population develops across the generations, new mutations appear which 
are lost or increased in their frequency due to drift. After a large number of generations, the 
resulting population reaches an equilibrium with a genome containing segregating linked loci 
in LD. The simulation can be tuned to yield a specific LD pattern by adjusting the population 
size and mutation rate parameters. This population in equilibrium will be referred to here as 
the founder population. In the second step, the founder population is allowed to reproduce 
by further extra generations with a low expansion rate and no mutation rate, and individuals 
of the last generation are taken as the gene pool population. By sampling the individuals to 
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be used in each replicate from a much enlarged gene pool population, it allows independence 
between replicates while ensuring that they share a similar LD pattern. 

In order to simulate the genome with similar LD pattern as a typical commercial sheep 
population, the initial population to create the LD (step 1) was composed of 100 individuals 
(50 males and 50 females). The genome consisted of 26 autosomal chromosomes of 1 Morgan, 
each with 1,000,000 loci (all fixed to one allele) with their mutation rate set at 10-7. After 
10,000 generations, over 9,000 loci were segregating at different frequency in each 
chromosome (around 250,000 segregating SNPs were simulated across the whole genome). 
Individuals at generation 10,000 were considered to be the founder population. For the 
expansion step, the founder population was further reproduced by five extra generations at a 
4X expansion rate (i.e. a male/female was randomly mated with several mates to produce 8 
offspring each).  Finally, 10,000 individuals from generation 10,005 were selected to form the 
gene pool. In order to further reduce close relationships among individuals from the gene 
pool, both the LD creation and expansion steps for each chromosome were done 
independently. This approach means that a given pair of individuals could have a half sib 
relationship at a given chromosome only but not for the rest. 

 

6.2.2 Selection scheme and optimum contribution selection 

To test the impact of the number of restriction, we sampled a population from the gene pool, 

simulated their breeding values and phenotypes.  Thereafter, their GEBV were calculated 

using GBLUP and then several OCS analyses were performed with different numbers of 

separate restrictions added to the OCS. 

 

Genetic Architecture and Population Structure: The genotypes of n individuals (half of each 

sex) were sampled from the genepool for the 26 chromosomes.  Thereafter 1,100 segregating 

loci per chromosome were randomly sampled and 1,000 were assigned as SNPs from the chip 

panel and 100 assigned as QTLs (i.e. the number of SNPs and QTLs across the whole genome 

were 26,000 and 2,600, respectively).   

The QTLs were assumed to be fully additive, and their QTL effects were sampled from a 

standardised normal distribution and the true breeding value (TBV) for a given individual was 

calculated as the sum of the all QTL effects. Then the variance of the TBV was calculated and 

the SNP effects were rescaled to achieve the desirable genetic variance and the TBV 

recalculated with the correct QTL effect. Thereafter an environmental deviation was sampled 

and added to the TBV. 

Genomic evaluation was carried out using GBLUP(GARRICK 2007). The GRM used in the 

evaluation was calculated using VR2 method (VANRADEN 2008) with the 26,000 SNPs assigned 

to the SNP chip. 
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Optimum Contribution Selection: Several OCS analyses were carried out in the dataset, 

varying the number of separate restrictions on genetic diversity. Once the contributions were 

maximised, the genetic gain and the expected rate of inbreeding for each independent region 

was calculated.  

The OCS was carried out using the quadratic programming algorithm proposed by PONG-WONG 

AND WOOLLIAMS (2018) which allows to include several restrictions and solves the problem in 

efficient computational manner. The simple OCS was including one single restriction 

corresponding to the overall genetic variance, with other OCS including restrictions on several 

regions plus the restriction of the overall diversity. 

In order to include a given restriction on diversity, a GRM specific to the region of interest was 

calculated using only the SNPs which were within the region of interest. The method for 

calculating the GRM to be used to restrict loss on diversity was based on the method from LI 

AND HORVITZ (1953).  This was done because of a previous study, whose results (given in section 

3) showed that this matrix was more consistent as indicator of genetic diversity remaining in 

the population. 

 

6.2.3  Scenarios compared  

The population was simulated assuming a trait controlled by a totally additive effect. The 

genetic variance was assumed to be 20 and the environmental variance 80 (h2= 0.2). We 

compared the effect of population size assuming 200, 400, 600, and 1,000 candidates available 

for selection. The rate of inbreeding tested were 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05. 

 

The OCS was carried out including one restriction on global diversity (covering all 26 

chromosomes) and then we performed other OCS scenarios adding the global diversity plus 

incremental number of specific region, until we included 9 extra separated restrictions on 

diversity (each covering 2 chromosomes). Note that the constraint on global diversity 

represents the average value across all the genome including the nine regions which were 

included when increasing the number of constraint in the OCS. 

 

6.3  Results 

The results of the optimisation when including a single constraint on the global inbreeding for 

all population size and rate of the constraint are shown in Table 1. In all cases considered here, 

the optimisation succeeded to find a solution which fulfils the constraint on the global ΔF used 

in the optimisation. As expected, the genetic gain was related to the size of the population 

and the strength of the constraint: the expected gain was higher with bigger population and 

higher rate of inbreeding allowed. 

Table 1: Performance of the OCS when including only the constraint on global F: expected gain 

and number of genomic regions which failed the global constraint on F. 
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Constraint on global ΔF 
 

  

Regions with F greater than 
the global restriction 

used in the optimisation 

Gain Extra regions 
Number of 

regions 
Extra F 

(%) 

   Mean Max Mean Max 

n=200 
0.005 2.75 9 5.08 7 30.55 61.84 
0.01 3.28 9 5.20 8 19.12 32.20 
0.02 3.83 9 5.14 8 14.41 20.65 
0.03 4.15 9 5.20 8 12.04 16.62 
0.04 4.36 9 5.28 8 10.63 13.57 
0.05 4.53 9 5.46 8 9.53 11.08 

       
n=400 

0.005 3.28 9 5.26 8 29.96 39.04 
0.01 3.76 9 5.36 9 19.11 11.96 
0.02 4.28 9 5.26 9 14.11 8.94 
0.03 4.57 9 5.22 8 12.06 10.74 
0.04 4.78 9 5.22 8 10.53 10.64 
0.05 4.91 9 4.94 8 10.41 12.40 

       
n=600 

0.005 3.64 9 5.50 8 32.70 173.85 
0.01 4.06 9 5.28 8 21.55 116.37 
0.02 4.54 9 5.30 8 15.28 65.31 
0.03 4.84 9 5.32 8 13.17 40.53 
0.04 5.05 9 5.40 9 11.68 26.87 
0.05 5.18 9 5.34 9 10.66 20.01 

       
n=1000 

0.005 4.84 9 5.42 7 20.78 49.78 
0.01 5.33 9 5.64 8 14.64 32.48 
0.02 5.63 9 5.56 9 12.77 26.84 
0.03 5.83 9 5.44 9 11.58 26.63 
0.04 5.98 9 5.42 9 10.63 27.87 

 

However, when inspecting the nine genomic regions separately, the OCS allowed for some of 

them to have a ΔF greater than the value allowed for the global F. In average, 5.3 regions (out 

of 9) were found to show level of inbreeding higher that the global ΔF allowed in the 

optimisation.  The excess loss of diversity on these regions averaged around 15% extra ΔF than 

the global one, but this value was as high as 50% with 2 outlier scenarios where a region 

showed a ΔF more than double the value achieved for the global average value.  The results 

obtained in this study confirm and quantify the common belief that OCS with a restriction on 
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the global diversity would yield results where some genomic regions will have a higher loss in 

genetic diversity.  Hence considering the diversity of different genomic regions separately and 

including them separately on the OCS should provide a better management of the genetic 

diversity. 

The results of the OCS including the global diversity constraint plus extra ones associated to 

the diversity of specific genomic regions are shown in Figure 5. In all scenarios across several 

population size and degree of strength on the constraints, all regions had rate for inbreeding 

lower or equal to the one assigned during the optimisation.  An interesting result is that adding 

these extra constraints has little detrimental effect of the expected genetic gain. In average 

there is a reduction on the gain when adding extra constraints, but the quantity was relative 

small to be of practical concern. 

 

 

Figure 5.  Expected genetic gain of the OCS when including extra constraints on diversity.  The 

results are for four population sizes (200, 400, 600 and 1,000 candidates) and 6 level of 

restriction given to each restriction (0.05, 0.1, 0.2, 0.3, 0.4 and 0.05). 

  

6.4 Final remarks  

The results from this study confirmed the general belief that an OCS where genetic diversity 
is managed by restricting the global inbreeding would allow for some regions of the genome 
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to exhibit a greater loss of the genetic diversity, supporting the proposal that a better 
approach would be to consider diversity of genomic regions separately and included them into 
the OCS independently in different constraints. Our results showed that this is feasible with 
very little detrimental effect of the genetic gain, making an attractive alternative for the 
management of commercial close populations. 

7 Conclusions 

Here we provided a new reformulation of the OCS in order to improve some practical 

behaviour of the OCS.  The value of the different GRMs as indicator of the level of genetic 

diversity in the population was assessed.  We showed that some of these matrices have 

behaviours which may lead to inconsistent interpretation of how level of genetic diversity is 

evolving across the time in a given population.  We also showed that some new enhancement 

of the OCS to improve the management of diversity have little or no detrimental effect on the 

selection response. 

8 Deviations or delays 

Three weeks of delay. Delay does not have impact in further works in WP5 
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The value of genomic relationship matrices 
to estimate levels of inbreeding
Beatriz Villanueva1*, Almudena Fernández1, María Saura1, Armando Caballero2, Jesús Fernández1, 
Elisabeth Morales‑González1, Miguel A. Toro3 and Ricardo Pong‑Wong4 

Abstract 

Background:  Genomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there 
are several methodologies to compute these matrices and there is still an unresolved debate on which one provides 
the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic 
matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of 
homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. 
We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations 
to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism 
genotypes in a population of Iberian pigs.

Results:  Except for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreed‑
ing coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as 
indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led 
to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, 
FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When 
variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate 
that more variability than that present in the base population can be lost, which is also unreasonable. The patterns 
for these coefficients observed in the pig population were very different, following the derived expectations. As a 
consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in 
magnitude but also in sign.

Conclusions:  Genomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead 
to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus 
to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of 
genomic predictions, they do not always provide a useful measure of inbreeding.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Inbreeding, i.e. the mating of individuals related by 
ancestry, is a fundamental concept in many areas of biol-
ogy, including animal and plant breeding [1], human 

genetics [2, 3], and evolutionary [4] and conservation 
biology [5]. Inbreeding results in a reduction of genetic 
diversity, as it increases homozygosity at the expense of 
heterozygosity. This increase in homozygosity in turn 
increases the incidence of homozygous recessive defects 
and decreases population means for many quantitative 
traits (i.e., inbreeding depression), particularly those 
related to fitness [6, 7].
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The level of inbreeding of an individual is measured by 
the inbreeding coefficient, which was defined by Wright 
as the correlation between homologous alleles of the 
two gametes that unite to form the individual [8], and 
later by Malécot as the probability that two homolo-
gous alleles at a given locus are identical-by-descent [9]. 
The inbreeding coefficient also gives the proportion by 
which the heterozygosity of an individual is reduced by 
inbreeding [10] and, thus, the proportional loss of genetic 
variation. Classically, the inbreeding coefficient of an 
individual has been determined based on its pedigree. 
However, the pedigree-based inbreeding coefficient pro-
vides only expected proportions of the genome that are 
identical-by-descent.

The level of inbreeding has also been estimated from 
molecular data, such as those contained in high-density 
single nucleotide polymorphism (SNP) arrays. Genomic 
inbreeding coefficients can be more accurate than pedi-
gree-based measures because they capture the variation 
due to Mendelian sampling and therefore can differenti-
ate among individuals with the same pedigree (e.g. [11]). 
Genomic measures also allow us to differentiate inbreed-
ing at specific regions of a genome, which is not possible 
with pedigree-based inbreeding.

Several methods have been proposed to calculate 
inbreeding coefficients using genomic data, including 
methods based on continuous runs of homozygosity (e.g. 
[11, 12] and methods applied on a SNP-by-SNP basis (e.g. 
[13–16]). Some of the latter measures come from matri-
ces that are used to obtain genomic predictions in animal 
breeding. In this context, best linear unbiased predicted 
(BLUP) evaluations are replaced by genomic BLUP 
(GBLUP) evaluations, in which the numerator rela-
tionship matrix (NRM) is substituted by one of several 
genomic relationship matrices (GRM) [15, 16]. Given that 
the diagonals of the NRM equal 1 plus the inbreeding 
coefficients for the corresponding individuals, it has been 
generally accepted that the diagonals of the GRM are 1 
plus the realized inbreeding level for the corresponding 
individuals. These genomic measures of inbreeding have 
been widely used [11, 17–47]. However, they can result 
in very different outcomes and the correlations between 
these estimators vary greatly and can even be negative, 
e.g. [27, 35]. Thus, there is still an unresolved debate on 
which are the best measures of inbreeding.

In this study, we compared genomic inbreeding coef-
ficients that were obtained from different SNP-by-SNP 
methods to understand their relationship with traditional 
definitions of inbreeding. First, we describe different 
coefficients based on genomic information at the indi-
vidual level. Second, we derive expectations at the popu-
lation level for the different coefficients based on a single 
locus model. These expectations are then used to explain 

the patterns of the coefficients computed based on thou-
sands of SNP genotypes across the genome in a highly 
inbred pig population.

Methods
Inbreeding coefficients obtained from genomic data
Individual inbreeding coefficients were obtained from 
the diagonal elements of five different genomic rela-
tionship matrices. These coefficients have been widely 
used in the literature, but under different names (see 
Table  1) and there is no consensus about the nomen-
clature. Here, the name chosen for each coefficient 

Table 1  Summary of the names given to different genomic 
inbreeding coefficients in the literature

* Self-relationship or self-coancestry

Nomenclature used 
in this paper

Nomenclature used 
in the literature

References

FNEJ FPH [19]

FM [20]

FMOL [33]

Homozygosity [21]

FHOM [28, 35]

HOMSNP [37]

SNP-Similarity* [29]

SIM* [47]

FL&H Fh or FH [11, 25, 40]

Fsnp [26]

FHOM [27, 33, 36, 41, 42, 46, 55]

FExHOM [35]

FPLINK [31]

FIS [45]

FEH [34]

LHR [22]

L&H* [47]

FVR1 FGRM [19, 41]

FGRM1 [35]

FVR [34]

FG [17]

VR1* [47]

FVR2 FhatI, FI [18, 42, 54]

FGRM [27, 33]

FGRM2 [35]

VR2* [47]

FYAN FhatIII, FIII [18, 42, 54]

Falt [11, 40]

GRM_F, FGRM [21, 28, 31]

FUNI [27, 35, 36, 41, 55]

Fgrm [31]

SNP-Yang* [29]

YAN* [47]
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makes reference to the authors who first proposed or 
formulated it explicitly, to the best of our knowledge. 
We compared the following coefficients:

1.	 FNEJ : inbreeding coefficient computed from the 
diagonal elements of the allelic relationship matrix of 
Nejati-Javaremi et al. [14] as:

	 where Iijk is the identity of the two alleles ( i and j ) 
of the individual at SNP k , which takes the value of 
1 if the two alleles are identical and 0 if they are not. 
Note that FNEJ is simply the proportion of SNPs that 
are homozygous for the individual and thus it does 
not distinguish between identity-by-state (IBS) and 
identity-by-descent (IBD) [48].

2.	 FL&H : inbreeding coefficient based on the relation-
ship matrix that describes deviations from Hardy–
Weinberg proportions, computed as:

	 where pk(0) is the frequency of the reference allele 
(allele B) of SNP k in the base (reference) population 
[13]. FL&H estimates the deviation of the observed 
frequency of homozygotes (AA and BB) from that 
expected in the base population under Hardy–Wein-
berg proportions. Thus, it corrects for the homozy-
gosity that was present in the base population and 
expresses molecular inbreeding in terms of IBD [42, 
48, 49].

3.	 FVR1: inbreeding coefficient computed from the diag-
onal elements of the genomic relationship matrix 
obtained according to VanRaden’s method 1 [15], as 
follows:

	 where xk is the genotype of the individual for SNP 
k , coded as 0, 1 or 2 for genotypes AA, AB and BB, 
respectively, and pk(0) is as defined for FL&H . FVR1 
is based on the variance of additive genetic values 
and provides a measure relative to frequencies of 
the reference allele in the base population. However, 
FVR1 differs from FL&H in that with FVR1 homozygous 
genotypes are weighted by the inverse of their allele 
frequency and, thus, rare homozygous genotypes 

FNEJ =

∑S
k=1(

∑2
i=1

∑2
j=1 Iijk )/2

S
− 1,

FL&H =
SFNEJ −

∑S
k=1[1− 2pk(0)(1− pk(0))]

S −
∑S

k=1[1− 2pk(0)(1− pk(0))]
,

FVR1 =

∑S
k=1 (xk − 2pk(0))

2

2
∑S

k=1 pk(0)(1− pk(0))
− 1,

contribute more to the inbreeding measure than 
common homozygous genotypes [35].

4.	 FVR2 : inbreeding coefficient computed from the 
diagonal elements of the genomic relationship matrix 
obtained according to VanRaden’s method 2 [15] as 
follows:

	 where xk and pk(0) are as for FVR1 . FVR2 is similar to 
FVR1 but the summation across markers is made dif-
ferently, such that the weight given to rare alleles is 
even greater. In FVR2 , the contribution of each SNP 
is divided by its own variance, whereas in FVR1 the 
contributions of all SNPs are divided by the same 
denominator [35].

5.	 FYAN : inbreeding coefficient computed from the 
diagonal elements of the genomic relationship matrix 
of Yang [16] as follows:

	 where xk and pk(0) are as for FVR1 . This coefficient 
is based on the correlation between uniting gam-
etes [16, 42] and also gives more weight to homozy-
gotes for the minor allele than to homozygotes for 
the major allele [40]. However, it has a lower sam-
pling variance than the previous coefficients [18, 35] 
because it accounts for the sampling error associated 
with each SNP [16, 28].

The coefficients that depend on allele frequencies, i.e. 
FL&H , FVR1 , FVR2 , and FYAN , need to be computed using the 
initial frequencies; i.e. those in the base population. Note 
that FNEJ is equivalent to FVR1 , FVR2 and FYAN when base 
population allele frequencies equal 0.5 [29].

Expected genomic inbreeding coefficients 
at the population level: a single locus model
Expected values for FL&H , FVR1 , FVR2 and FYAN at the pop-
ulation level were derived based on a single SNP model. 
Let p(0) be the frequency of allele B in the base population. 
After t generations, the frequency will have changed to p(t) 
due to random drift and selection, among other reasons. 
Assuming random mating, we can expect that genotype 
frequencies within a generation are in Hardy–Weinberg 
equilibrium. Thus, the expected F for a group of individuals 
from generation t can be obtained as:

where freq(AA) = (1− p(t))
2 , 

freq(AB) = 2p(t)(1− pt(t)) and freq(BB) = p2(t) , and FXY 

FVR2 =
1

S

S
∑

k=1

(xk − 2pk(0))
2

2pk(0)(1− pk(0))
− 1,

FYAN =
1

S

S
∑

k=1

x2k −
(

1+ 2pk(0)
)

xki + 2p2k(0)

2pk(0)(1− pk(0))
,

E(F) = [freq(AA)FAA + freq(AB)FAB + freq(BB)FBB],
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is the inbreeding coefficient for an individual with geno-
type XY  , which is computed using the initial frequency 
p(0) , as described in the previous section. To assess 
the impact of initial and current allele frequencies on 
expected values of the evaluated inbreeding coefficients, 
the latter were evaluated for the whole range of values for 
p(0) and p(t).

Evaluation of genomic inbreeding in a population 
of Guadyerbas pigs
Results from the single locus model were evaluated in a 
population of Iberian pigs, with thousands of SNPs used 
to compute the inbreeding coefficients across the genome 
and at specific genomic regions.

Pig samples and SNP genotypes
The data used were from a herd of Guadyerbas Iberian 
pigs. The Guadyerbas strain is one of the most ancient 
surviving Iberian strains. It is highly inbred and in seri-
ous danger of extinction. The strain originated from four 
males and 20 females [50] and was conserved from 1944 
until 2011 as a genetically isolated population. Accurate 
and complete genealogy was available from when the 
herd was first established (about 25 generations) and 
included 1178 animals born from 197 sires and 467 dams.

DNA samples were available for 86 males and 141 
females born in the herd between 1992 and 2011 and 
were genotyped with the Illumina PorcineSNP60 Bead-
Chip v1. SNP positions in the genome were based on 
the genome assembly Sscrofa 11.1. After quality control, 
as described in Saura et al. [20], 219 animals and 47,120 
SNPs remained. In Iberian pigs, the generation interval 
is about three years, and thus for analysis of genomic 
inbreeding, we considered six cohorts of animals born in 
successive periods of three years, starting from year 1994 
(Table 2).

Patterns of genomic inbreeding coefficients
Genomic coefficients were obtained for all genotyped 
pigs using the SNPs that segregated in cohort 1 (17,951 
SNPs). The frequencies used to calculate FL&H , FVR1 , 
FVR2 , and FYAN were those for cohort 1 (i.e. this cohort 
was considered to be the base population). Patterns of 
inbreeding across the genome were determined using 
sliding windows of 35 SNPs (average length of 4.25 Mb) 
that were moved one SNP at a time (17,339 windows). 
For each window, the average F  was computed in order to 
reduce the noisiness of single-locus estimates and to clar-
ify the graphical representations [51–53]. For the coeffi-
cients that depend on allele frequencies ( FL&H , FVR1 , FVR2 
and FYAN ), the formulae were applied within each win-
dow. Finally, values were averaged across individuals.

Inbreeding depression
The behavior of the different genomic inbreeding coef-
ficients will have consequences when they are used to 
estimate the rate of inbreeding depression across the 
genome. In order to investigate this, we performed a 
genome scan for inbreeding depression for the num-
ber of piglets born alive in the Guadyerbas population, 
using all genotyped sows with records born in the six 
cohorts (109 sows and 265 litter records) and the slid-
ing window approach. The animals and phenotypic 
data used and the model fitted are described in detail in 
Saura et al. [26]. Briefly, inbreeding depression was esti-
mated by regressing the number of piglets born alive 
on F assuming a linear model. Fixed effects included 
the combination of season of farrowing and farrowing 
facilities, parity, strain of boar, and the linear regression 
on F  . Random effects included additive genetic, per-
manent environmental, and residual effects. The vari-
ance–covariance matrix of additive genetic effects was 
assumed to be the pedigree-based numerator relation-
ship matrix. Three measures of F  ( FL&H , FVR2 and FYAN  ) 
computed using genotypes for all genotyped sows with 
phenotypic data born from cohort 1 to cohort 6, were 
used as covariates to estimate inbreeding depression.

Results
Range of values and interpretation of the genomic 
inbreeding coefficients
The inbreeding coefficients investigated differ in the 
range of values that they can contain and, with the 
exception of FNEJ  , their ranges depend on the allele 
frequency in the base population p(0) . Coefficient 
FNEJ  ranges from 0 to 1 because it is the proportion of 
homozygous SNPs. At the individual level, values for 
FL&H range from − ∞ to 1, and those for FVR1 , FVR2 and 
FYAN  range from − 1 to ∞ (Figs. 3, 4, and 5, in Zhang 
et  al. [27]). When all SNP genotypes are homozygous, 
FL&H equals 1 and when all are heterozygous, it ranges 

Table 2  Number of genotyped animals per cohort and sex in 
the Guadverbas population

Cohort Birth year range Males Females

1 1994–1996 13 18

2 1997–1999 10 42

3 2000–2002 24 18

4 2003–2005 8 19

5 2006–2008 8 7

6 2009–2011 19 29

Total 82 133



Page 5 of 17Villanueva et al. Genet Sel Evol           (2021) 53:42 	

from − ∞ to − 1. FVR1 and FVR2 cover the entire range 
(from −  1 to ∞) both when all SNP genotypes are 
homozygous or heterozygous. Finally, when all SNP 
genotypes are homozygous, FYAN  ranges from 0 to ∞ 
and when they all are heterozygous, FYAN  equals −  1. 
Thus, values for FL&H , FVR1 , FVR2 and FYAN  can be out-
side the permitted ranges for probabilities and corre-
lations. Nevertheless, as inbreeding coefficients, they 
can still be interpreted as the proportional loss or gain 
in variability (heterozygosity) relative to the variabil-
ity in the base population, with a negative value indi-
cating that variability has been gained and a positive 
value that variability has been lost. It is also possible to 
gain more than 100% of the initial variability but it is 
not possible to lose more than 100%. A value equal to 1 
indicates that all the variability that was present in the 
base population has been lost but a value greater than 
1 indicates that more variability than what existed  ini-
tially has been lost, which does not make sense.

Expected values of genomic inbreeding coefficients based 
on the single locus model
Expected values for FL&H , FVR1 (or FVR2 ) and FYAN 
based on the single locus model for the whole range 
of starting ( p(0) ) and current ( p(t) ) frequencies are 
shown in Fig.  1. Note that for a single locus model 
E(FVR1) = E(FVR2) = E(FVR).

The expected value for FL&H (Fig. 1a) ranged from − ∞ 
and 1. When the frequency of the minor allele increases 
(i.e. p(t) > p(0) ) towards 0.5, E(FL&H ) becomes negative, 
which indicates that some variability has been gained. 
This makes sense given that the maximum variability 
occurs when the frequency is 0.5. Given that the upper 
limit of E(FL&H ) is 1, when using this coefficient, one 
never expects more variability to be lost than the vari-
ability that initially existed. E(FL&H ) takes the value of 1 
when the SNP becomes fixed, which is equivalent to all 
the variability being lost.

The expected value  for FVR based on the diagonals 
of VanRaden’s GRM is within the range [0, 1] for some 
combinations of p(0) and p(t) , but for many other com-
binations it is outside this range (Fig. 1b). In fact, E(FVR) 
ranges from − 1 to ∞. This means that E(FVR) can indi-
cate that some variability has been gained but this gain 
can never be greater than 100% of the initial variability, as 
the lower limit is − 1. It also means that E(FVR) can indi-
cate that more than 100% of the initial variability is lost, 
as it can take values higher than 1 (up to ∞).

In the right panel of Fig. 1b, the grid of initial and cur-
rent frequencies is divided in regions where E(FVR) is < 0, 
between 0 and 1, or > 1. When the frequency of the minor 
allele is doubled (i.e. p(t) = 2p(0) ) but still lower than 0.5, 
E(FVR) = 1 , which means that 100% of the variability has 

been lost in the current generation when, in fact, variabil-
ity has increased. For instance, if  p(0)= 0.25 and  p(t)= 0.5, 
E(FVR) indicates that all the initial variability has been 
lost, although the maximum variability is reached at a 
frequency of 0.5. When the frequency of the minor allele 
more than doubles (i.e. p(t) > 2p(0) ), E(FVR) becomes > 1 
(for instance, for p(0) = 0.1 and p(t) = 0.3, E(FVR) = 2.2), 
which indicates that more than 100% of the initial vari-
ability has been lost, which is unreasonable. When the 
initial frequency of the minor allele is lower than 0.33 and 
decreases, then E(FVR) < 0, which indicates that variabil-
ity has increased relative to its initial value. This is also 
the case when the minor allele is lost ( p(t) = 0). Thus, 
although variability in the current generation is lower 
than in the initial generation in these cases, E(FVR) incor-
rectly indicates that some variability has been gained.

On the one hand, although for a particular individual 
in the population, FYAN can be negative (up to − 1), con-
trary to E(FVR) , E(FYAN ) is never smaller than 0 (it ranges 
from 0 to ∞; Fig.  1c), which indicates that the level of 
heterozygosity cannot become larger than the level that 
existed initially, which is unreasonable. On the other 
hand, and as for E(FVR) , E(FYAN ) can be greater than 1, 
implying that more heterozygosity than what existed 
initially can be lost. In addition, although increasing the 
frequency of the minor allele towards 0.5 increases vari-
ability, E(FYAN ) can indicate a decrease in variability. 
For instance, when p(0) = 0.1 and remains at 0.1 in the 
current generation, E(FYAN ) = 0. However, if the fre-
quency increases to 0.2, E(FYAN ) becomes greater than 
0 ( E(FYAN ) = 0.11), which indicates that some variability 
has been lost. And, if it increases to 0.5 (in theory a value 
at which the variability is maximum), E(FYAN ) becomes 
greater than 1 ( E(FYAN ) = 1.78), which indicates that 
more than 100% of the initial variability was lost.

When the initial frequency ( p(0) ) is set to 0.5, the 
expected value for FL&H , FVR and FYAN is the same 
regardless of the current frequency ( p(t) ) (see Additional 
file 1: Figure S1). In this scenario, these three coefficients 
range from 0 (when p(t) remains at 0.5) to 1 (when the 
SNP becomes fixed; i.e. p(t) = 0 or 1).

Figure 2 shows the same profiles as in Fig. 1, but with 
the reference allele driven to a frequency of 0 (Fig. 2a), 0.5 
(Fig. 2b) or 1 (Fig. 2c) in the current generation. Note that 
there is some redundancy in Fig.  2a, c since fixation of 
the major allele is equivalent to loss of the minor allele. 
For any value, E(FL&H ) = 1 when the SNP becomes 
fixed ( p(t) = 0 or 1), regardless of the initial frequency, 
as expected (Fig. 2a, c). However, when the major allele 
is lost (Fig. 2a) or when the minor allele is fixed (Fig. 2c), 
both E(FVR) and E(FYAN ) take values greater than 1 (in 
fact their upper limit is ∞). Losing the minor allele leads 
to negative values for E(FVR) when p(0) < 1/3 and its limit 
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Fig. 1  Expected inbreeding coefficient based on excess of homozygosity ( FL&H ) (a) and expected inbreeding coefficients computed from the 
diagonal elements of the genomic relationship matrices of VanRaden (methods 1 and 2; FVR = FVR1  = FVR2 ) (b) and of Yang ( FYAN) (c) as a function 
of starting and current allele frequencies at a single locus. On the right, the grid of initial and current frequencies is divided in regions where the 
expected value of F is < − 1, < 0, between − 1 and 0, between 0 and 1, or > 1
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is − 1 (Fig. 2a). Another way of looking at this is that fix-
ing the major allele leads to negative values for E(FVR) 
when p(0) > 2/3, and its limit is also − 1 (Fig. 2c). In these 
scenarios, the value of E(FYAN ) remains equal to 1. It is 

interesting to note that when p(t) = 0.5, E(FYAN ) , and to 
a lesser extent E(FVR) , behave as a mirror image of FL&H 
(Fig. 2b).

In summary, expected values for FL&H , FVR1 , FVR2 and 
FYAN depend on frequency changes. When the inbreed-
ing coefficient is interpreted as an indicator of loss or 
gain of variability, FL&H gives sensible values but FVR1 , 
FVR2 , and FYAN do not. In fact, E(FL&H ) follows the trend 
of loss or gain in heterozygosity due to changes in allele 
frequencies. When the minor allele frequency (MAF) 
decreases (i.e. when heterozygosity decreases relative to 
that in a reference base population), E(FL&H ) increases. 
However, E(FVR1) and E(FVR2) can lead us to think that: 
(i) more than 100% of the initial variability is lost; and, 
even worse, (ii) variability has increased when in reality it 
has decreased or vice versa. E(FYAN ) also leads to incon-
sistent results since it never indicates that variability has 
increased, but it can indicate that more than 100% of the 
initial variability is lost.

Patterns of genomic inbreeding in the population 
of Guadyerbas pigs
Summary statistics for the different inbreeding coeffi-
cients, computed both at the individual level and at the 
regional (window) level, are in Table  3 for the first and 
last cohorts. Average values for each coefficient at the 
individual and regional levels were practically the same 
but those at the regional level varied much more than 
those at the individual level, particularly for cohort 6. The 
proportion of homozygous loci ( FNEJ ) increased by 5% 
from cohort 1 to cohort 6. Coefficient FNEJ had a much 
higher average and a lower standard deviation than the 
other coefficients. Coefficients that are weighted by the 
initial frequencies (i.e. FL&H , FVR1 , FVR2 and FYAN ) were 
on average less than 0 for cohort 1 (about −  0.1) and 
became positive (up to ~ 0.2) for cohort 6.

Pairwise correlations between coefficients computed 
both at the individual and regional (window) level are in 
Fig. 3. Correlations at the individual animal level (which 
are averages across the genome) ranged from 0.4 to 1 
for cohort 1 and from 0.7 to 1 for cohort 6. As expected, 
the correlation between FNEJ and FL&H was 1. Correla-
tions higher than 0.9 were also found between FYAN and 
FNEJ, FYAN and FL&H , FYAN and FVR1 , and FVR1 and FVR2 . 
The lowest correlations were between FVR2 and FNEJ and 
between FVR2 and FL&H , but these correlations increased 
from ~ 0.4 for cohort 1 to ~ 0.7 for cohort 6, which could 
be due to the loss of rare alleles over time but also to ran-
dom fluctuations. At the regional genomic level, changes 
in frequencies can be more exaggerated, which results in 
lower correlations between coefficients than at the indi-
vidual animal level, particularly for those involving Van-
Raden’s coefficients.

Fig. 2  Expected FL&H , FVR(FVR1 = FVR2) and FYAN in the generation in 
which the reference allele was lost (a), driven to a frequency of 0.5 (b), 
or fixed (c) relative to the initial frequency ( p(0) ). FL&H : blue line, FVR : 
brown line, FYAN : red line
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The pattern of homozygosity clearly varied across 
chromosomes and across regions within chromosomes 
(Fig. 4). For several genomic regions, SNPs that were still 
segregating in cohort 1 became fixed in cohort 6 (see for 
example, Sus scrofa (SSC) chromosomes 4, 8, 13, 14 and 
17).

Figure 5 compares the patterns of the different coeffi-
cients across the genome for cohort 6. Here, we only con-
sider the SNPs that segregated in cohort 1. In general, the 
patterns differed a lot between coefficients. It is interest-
ing to note that, in general, the patterns for FVR1 and FVR2 
were mirror images of those for FL&H . One particularly 
striking result is that in regions where SNPs had become 
fixed (see also Fig.  4), FL&H was equal to 1 whereas 
FVR1 and FVR2 were negative with large absolute values. 
Two very clear examples are the region between 43 and 
56 Mb on SSC4 and the region between 58 and 82 Mb on 
SSC14. In both these regions, the initial frequency of the 
minor allele was very low ( p(0) ≤ 0.1), and the allele was 
already lost in cohort 6 ( p(t) = 0). At all positions within 
these regions, FL&H was equal to 1, while FVR1 and FVR2 
became negative (about −  0.8 in the SSC4 region and 
ranging from − 0.9 to − 0.6 in the SSC14 region), which 
incorrectly suggests that some variability was gained, and 
FYAN was low (about 0.1 in the SSC4 region and ranging 
from 0.1 to 0.2 in the SSC14 region). These observations 
agree with the expectations described above and lead us 
to conclude that FL&H is a much more valuable measure 
of change in variability than FVR1 or FVR2 . For the regions 
where all variability was lost, FL&H is expected to indicate 
that this is the case, but both FVR1 and FVR2 indicate that 
variability was gained.

In addition, there are some regions for which the vari-
ability increased from cohort 1 to cohort 6, as FNEJ was 

lower in the latter (Fig. 4), e.g. the regions between 102 
and 112 Mb on SSC3, between 41 and 72 Mb on SSC6, 
and between 81 and 97 Mb on SSC13. In all these cases, 
FL&H did indeed show this increase in variability since 
it became negative. However, FVR1 and FVR2 were again 
like mirror images of FL&H , while FYAN was positive but 
close to 0. These observations also agree with expecta-
tions. For instance, the average p(0) and p(t) in the SSC13 
region were 0.31 and 0.40, respectively. With this change 
in frequency, E(FL&H ) varied from −  1 to 0, while the 
expected values for FVR1 , FVR2 and FYAN were all between 
0 and 1. Also remarkable are the high peaks observed for 
FVR2 . In some regions on SSC2 and SSC17, FVR2 reached 
a value as high as 4. In these regions (between 35 and 
38 Mb on SSC2 and between 33 and 34 Mb on SSC17), 
there are SNPs with rare alleles ( p(0) < 0.1) which had a 
high increase in frequency ( p(t) > 0.3), and under these 
circumstances, FVR2 is expected to reach very high posi-
tive values (Fig.  1b), while FL&H is expected to become 
negative (Fig. 1a).

With VanRaden’s and Yang’s coefficients, and in par-
ticular FVR2 , a higher inbreeding coefficient is assigned 
to an individual that is homozygous for a rare allele 
than to an individual that is homozygous for a common 
allele. Thus, FVR1 , FVR2 , and FYAN  put a greater weight 
on SNPs that have a low MAF. Based on this, in addi-
tion to the scenario considered so far, in which all the 
SNPs segregating in cohort 1 (MAF > 0) were used to 
calculate the inbreeding coefficients, we analyzed two 
additional scenarios with different MAF thresholds 
in cohort 1: (i) using only the common variants (here 
defined as SNPs with MAF > 0.05); and (ii) using only 
the very common variants (here defined as SNPs with 
MAF > 0.25). This allowed us to determine how the dif-
ferences between coefficients were affected by MAF.

Table 3  Mean, standard deviation (SD) and minimum and maximum values for the different genomic inbreeding coefficients when 
computed at the individual animal or genomic region level in cohorts 1 and 6 of the Guadyerbas population

Cohort Individual level Regional level

Mean SD Min Max Mean SD Min Max

1 FNEJ 0.616 0.024 0.580 0.674 0.615 0.084 0.300 0.968

FL&H − 0.095 0.070 − 0.198 0.071 − 0.095 0.122 − 0.517 0.373

FVR1 − 0.095 0.076 − 0.230 0.119 − 0.095 0.122 − 0.517 0.372

FVR2 − 0.088 0.108 − 0.279 0.211 − 0.088 0.106 − 0.450 0.340

FYAN − 0.088 0.053 − 0.165 0.061 − 0.088 0.106 − 0.450 0.341

6 FNEJ 0.669 0.025 0.631 0.743 0.669 0.124 0.307 1.000

FL&H 0.056 0.070 − 0.052 0.268 0.056 0.353 − 2.939 1.000

FVR1 0.120 0.079 − 0.014 0.417 0.111 0.352 − 0.853 2.717

FVR2 0.175 0.108 0.023 0.609 0.172 0.558 − 0.876 4.118

FYAN 0.090 0.076 − 0.014 0.364 0.089 0.215 − 0.465 1.306
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Figure 6 shows the patterns of each coefficient com-
puted using only SNPs with a MAF > 0.05 or > 0.25 for 
three chromosomes. When only SNPs with a MAF 
higher than 0.05 in cohort 1 were used, some of the 
strong peaks previously obtained disappeared, in par-
ticular for FVR2 (Fig.  6 versus Fig.  5). Using an even 
stricter MAF filter (MAF > 0.25) led to very similar 

patterns for all inbreeding coefficients (Fig. 6). In fact, 
pairwise correlations between coefficients increased 
considerably compared to those shown in Fig. 3. When 
only SNPs with a MAF higher than 0.25 were used, all 
correlations were higher than 0.95, both in cohorts 1 
and 6. SNPs with a MAF higher than 0.05 and higher 
than 0.25 represented 92% (16,532 SNPs) and 54% 

Fig. 3  Scatter plots for inbreeding coefficients FNEJ , FL&H , FVR1 , FVR2 and FYAN in the Guadyerbas population when computed at the individual animal 
(a) or genomic region (b) level in cohorts 1 (left panels) and 6 (right panels), and the corresponding correlation coefficients ( r )
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Fig. 4  Evolution of the proportion of the genome that becomes homozygous (i.e. FNEJ) from cohort 1 (grey lines) to cohort 6 (black lines) for the 
different chromosomes (SSC) in the Guadyerbas population when using SNPs with non-zero minor allele frequencies. The horizontal lines represent 
averages across the genome
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Fig. 5  Patterns of different measures of genomic inbreeding ( FL&H blue line, FVR1 light brown line, FVR2 dark brown line, FYAN red line) in cohort 6 for 
different chromosomes (SSC) in the Guadyerbas population when using SNPs with non-zero minor allele frequencies in cohort 1
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(9,716 SNPs), respectively, of the total number of segre-
gating SNPs in cohort 1. Note that SNP density greatly 
decreased in some regions when SNPs were filtered 
on MAF, resulting in the discontinuities seen in Fig. 6. 
These results show that the inconsistencies described 

earlier for FVR1 , FVR2 , and FYAN  occur when there are 
SNPs with a low MAF, and in practice such SNPs exist. 
Removing loci with rare alleles would defeat the ration-
ale behind the coefficients that intentionally give more 
weight to rare alleles.

Fig. 6  Patterns of different measures of genomic inbreeding ( FL&H blue line, FVR1 light brown line, FVR2 dark brown line, FYAN red line) in cohort 6 for 
chromosomes 1, 4, and 17 in the Guadyerbas population when using SNPs with minor allele frequencies > 0.05 (a) or > 0;25 (b) in cohort 1
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Consequences for the estimation of inbreeding depression
For each of the three measures of F  , the patterns of the 
rate of inbreeding depression (i.e. the regression coef-
ficient, b) for all chromosomes are shown in Additional 
file 2: Figure S2. Across the whole genome, the estimates 
of b differed substantially between the methods used to 
compute F  . In some regions within chromosomes, esti-
mates of b were very similar across methods but in other 
regions they differed greatly, not only in magnitude but 
also in sign. As an illustration, Fig.  7 shows selected 
regions within chromosomes for which the conclusions 
on the magnitude and sign of the rate of inbreeding 
depression differ substantially. In the regions from 50 to 
70  Mb and from 98 and 109  Mb on SSC6, estimates of 
b were close to 0 when using FL&H and FVR2 but clearly 
different from 0 when using FYAN . However, in other 
regions (e.g. from 90 to 113  Mb on SSC8, from 20 to 
24 Mb on SSC10, from 50 to 65 Mb on SSC14, and from 
56 to 60 Mb on SSC17), FL&H and FYAN led to estimates 
of b that were of the same sign but opposite to estimates 
obtained when using FVR2 . In the region from 7.5 to 
11 Mb on SSC18, the sign of the estimate of b obtained 
with FL&H was opposite to that obtained with FVR2 and 
FYAN .

Pairwise correlations between estimates of rates of 
inbreeding depression computed with FL&H , FVR2 , 
and FYAN are in Additional file  3: Figure S3. Across the 
genome, correlations involving estimates based on FVR2 
ranged from ~ 0.4 to 0.5, whereas the correlation between 
estimates based on FL&H and FYAN was high (0.84). About 
40% of the estimates of b in Additional file  3: Figure S3 

were of opposite sign when based on FL&H and FVR2 , 
and this percentage decreased to ~ 27% when estimates 
were based on FVR2 and FYAN and to ~ 15% when using 
FL&H and FYAN . This reinforces the idea that care should 
be taken when interpreting estimates of inbreeding 
depression obtained with different measures of genomic 
inbreeding.

Discussion
The inbreeding coefficient has been defined as a prob-
ability [9] or as a correlation [8], and thus its legitimate 
range is between 0 and 1 or between − 1 and 1, respec-
tively. Another interpretation of the inbreeding coef-
ficient, which we have used here, is in terms of loss or 
gain of variability relative to a reference base popula-
tion. Under this interpretation, on the one hand, a nega-
tive value (even a value lower than − 1) makes sense and 
means that some variability has been gained. On the 
other hand, a value higher than 1 means that more vari-
ability than that initially existing has been lost, which is 
not reasonable.

Using a single locus model, we provided expectations 
for different genomic inbreeding coefficients that have 
been widely used in the literature. These expectations 
help to understand the patterns of these coefficients 
when they are computed using thousands of SNPs in 
a real population. Except for FNEJ , none of the genomic 
coefficients considered here (i.e. those depending on 
allele frequencies) match with Malécot’s or Wright’s defi-
nition of the inbreeding coefficient as a probability or 
correlation, respectively, since their values can be outside 

Fig. 7  Patterns of the rate of inbreeding depression (b) for number of piglets born alive in the Guadyerbas population when computed using 
different measures of genomic inbreeding ( FL&H blue line, FVR2 brown line, FYAN red line) for specific regions of six chromosomes. All genotyped sows 
with phenotypic data that were born from cohort 1 to cohort 6 were included in the analyses
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the legitimate ranges [47]. In fact, at the individual ani-
mal level, FL&H can range from − ∞ to 1 and FVR1 , FVR2 , 
and FYAN from − 1 to ∞. At the population level (see the 
section on expected genomic coefficients under a single 
locus model above), the ranges are the same as at the 
individual level, except for FYAN , which can range from 0 
to ∞. When these coefficients are interpreted as indica-
tors of whether variability is gained or lost over genera-
tions, FL&H leads to sensible results but FVR1 , FVR2 , and 
FYAN do not. This also has consequences when estimat-
ing the rate of inbreeding depression for specific genome 
regions since different measures of inbreeding can lead to 
very different results.

Although FL&H is not a probability or a correlation, this 
measure of inbreeding is useful for determining whether 
variability is lost or gained. The largest variability (het-
erozygosity) for biallelic loci occurs at allele frequencies 
equal to 0.5. When a rare allele increases its frequency 
towards 0.5, FL&H indicates that variability is gained, as 
expected. In addition, this measure of inbreeding never 
indicates that more variability than what existed in the 
initial generation was lost. In contrast, FVR1 , FVR2 , and 
FL&H also do not match with a definition of inbreeding 
based on the proportion of variability lost or gained. In 
fact, for some p(0) and p(t) combinations, these three 
coefficients can indicate that variability is lost when the 
MAF increased towards 0.5, and this loss can be even 
higher than 100% of the initial variability. Moreover, FVR1 
and FVR2 can take values that indicate that heterozygosity 
in the current generation is higher than what existed in 
the initial generation, although some heterozygosity has 
actually been lost. This does not occur with FL&H at the 
population level since E(FL&H ) is never negative, i.e. it 
always indicates that heterozygosity decreases although, 
in theory, it could increase.

One of the advantages of using genomic rather than 
pedigree data to measure inbreeding is the possibility of 
investigating the pattern of inbreeding along the genome. 
Here, we compared the patterns of each genomic coeffi-
cient computed from thousands of SNPs obtained with 
the Illumina PorcineSNP60 BeadChip v1 in a population 
of Iberian pigs. This population is highly inbred, with an 
estimated effective population size as low as 20 [54, 55]. 
The behaviour of each inbreeding coefficient observed 
with real data was well explained by the expectations 
developed. In the six generations (i.e. from cohort 1 to 
cohort 6), many SNPs became fixed (see Fig.  4). This 
loss of variability was captured by FNEJ (which is sim-
ply the proportion of homozygous SNPs) and was also 
clearly reflected in the value for FL&H ( FL&H = 1). How-
ever, the negative values obtained for FVR1 and FVR2 for 
these regions indicate that variability in cohort 6 was 
higher than in cohort 1. For regions where the variability 

increased from cohort 1 to cohort 6, FL&H had nega-
tive values (which reflects reality), while FVR1 , FVR2 , and 
FYAN had positive values (which do not reflect the real-
ity). Although E(FYAN ) predicts that variability can be 
gained in some circumstances, this occurs when, in fact, 
variability has been lost. In general, FVR1 and FVR2 behave 
similarly, although values for FVR2 are more extreme. Val-
ues for FYAN lie between those for FL&H and those for 
FVR1 and FVR2 , and generally, are close to 0. Given these 
results, it is clear that, when specific genome regions are 
targeted to control inbreeding, the choice of the genomic 
coefficient used should be done with care.

We have analysed the behaviour of five genomic meas-
ures of inbreeding that have been widely used in the lit-
erature. However, other measures have been proposed 
(see review by Kardos et al. [32]). For instance, both the 
PLINK [56] and GCTA [18] software provide a modi-
fication of FL&H (their FII , here referred to as FL&H2 ). 
Although to our knowledge, FL&H2 is not widely used, it 
is interesting to note that the difference between FL&H 
and FL&H2 is equivalent to the difference between FVR1 
and FVR2 in that it only differs in how the summation 
over SNPs is carried out. This is clearly illustrated by 
the patterns of these coefficients obtained for the Gua-
dyerbas pig population (see Additional file 4: Figure S4). 
The patterns for FL&H were, in general, mirror images of 
the patterns for FVR1 and those for FL&H2 were, in gen-
eral, mirror images of patterns for FVR2 . Another widely 
used measure of genomic inbreeding, which we have not 
considered here, is the coefficient FROH based on con-
tinuous runs of homozygosity (ROH) [11, 12]. Contrary 
to the coefficients considered here, which are computed 
on a SNP-by-SNP basis, FROH is computed on a segment 
basis and has the advantages that (i) its values range from 
0 to 1 ( FROH is the proportion of the genome that is in 
ROH); and (ii) it can distinguish between distant (based 
on short ROH) and recent (based on long ROH) inbreed-
ing. Its ability to detect inbreeding depression has been 
proven in multiple studies [3, 11, 12, 19, 21, 25, 26, 28, 32, 
36, 39, 40, 42, 57]. However, the exact definition of FROH 
varies across studies, depending on the choice of the 
parameters to define a ROH (e.g. number of heterozy-
gous genotypes permitted in a ROH, minimum SNP den-
sity required, maximum distance allowed between two 
consecutive homozygous SNPs, and minimum number of 
SNPs). Because of this, population-wide expected values 
for FROH are difficult to derive.

The pedigree-based numerator relationship matrix, 
NRM [58] has been used very extensively for many 
years to estimate the genetic covariance between indi-
viduals that are genetically evaluated via best linear unbi-
ased prediction (BLUP). With the advent of genomic 
evaluations [59], the NRM has been replaced by more 
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precise realised relationship matrices, which has led to 
an increase in the accuracy of predicted breeding values 
(e.g. [60]). Replacing NRM with GRM has also led to two 
other applications. The first application was the object of 
our study. Given that self-relationships in the NRM are 
expected to be equal to 1 plus the individual’s inbreeding 
coefficient, genomic inbreeding coefficients have been 
also obtained from the diagonals of the GRM. However, 
as we have shown here, this is not always justified. In 
the ideal situation, with an infinite number of independ-
ent loci and absence of migration, mutation, and selec-
tion, the average allele frequencies remain constant over 
generations and all measures, except FNEJ , are expected 
to produce unbiased estimates of the inbreeding coef-
ficient (IBD) relative to a base population that is in 
Hardy–Weinberg equilibrium [42, 61]. However, in more 
realistic situations, the proposed genomic estimators 
of inbreeding can result in very different outcomes. The 
second application of the GRM is based on the fact that 
the NRM is equal to twice the matrix of coancestry coef-
ficients and, as such, it has been used to optimize con-
tributions of breeding candidates by applying the optimal 
contribution method (OC) for maintaining genetic vari-
ability and avoiding inbreeding depression in genetic 
conservation programs [47, 62, 63]. In this context, GRM 
have been used in OC, replacing NRM. de Cara et al. [64] 
and Gomez-Romano et  al. [65] showed that the use of 
the coancestry matrix computed from Nejati-Javaremi’s 
GRM in OC resulted in a higher level of genetic diversity 
(measured as expected heterozygosity) being maintained 
than when using the NRM in OC. Morales-González 
et al. [47] showed that the amount of genetic variability 
retained was higher when using Nejati-Javaremi’s or Li 
and Horvitz’s matrices in OC than when using VanRaden 
and Yang’s GRM, although the latter were also efficient in 
controlling the loss of genetic diversity. Thus, in the con-
text of optimizing contributions for maintaining diver-
sity, VanRaden and Yang’s GRM are useful. In fact, it has 
been suggested [66] that although the use of VanRaden 
and Yang’s GRM in OC results in less variability being 
maintained, they could lead to allele frequencies that are 
closer to those in the original population (i.e. allele fre-
quencies would tend to be unchanged), which can be an 
objective in conservation programs, particularly in ex 
situ conservation programs, where the final aim is rein-
troduction to the wild [67].

It has been suggested that the use of whole-genome 
sequence data could produce improved genomic 
inbreeding coefficient estimates [23] because it cap-
tures the many variants with rare alleles, which may not 
be included in the SNP panels due to their ascertain-
ment bias. However, including a higher proportion of 
variants with rare alleles is expected to lead to even more 

inconsistent results than those shown here when using 
FYAN and FVR1 , and particularly FVR2.

Under the infinitesimal model, the NRM is a matrix 
of covariances of breeding values but, importantly, it is 
also twice the matrix of coancestry coefficients, with self-
coancestries on the diagonal. Given that the relationship 
between self-coancestry ( f  ) and inbreeding ( F  ) coeffi-
cients is f = 0.5(1+ F) , the NRM provides estimates of 
F  . GRM are also covariance matrices that have proven 
to work very well in genomic predictions. However, 
although FNEJ and FL&H correctly indicate when variabil-
ity is lost or gained, this is not the case with FVR1 , FYVR2 , 
and FYAN .

Conclusions
Except for FNEJ (which ranges from 0 to 1), values for 
the genomic coefficients investigated here are outside 
the ranges of Malécot’s and Wright’s definitions of coef-
ficient of inbreeding. When using a third interpreta-
tion of inbreeding in terms of loss or gain of variability, 
FL&H gives sensible values but FVR1 , FVR2 , and FYAN do 
not. In fact, the expectations derived here at the popu-
lation level show some inconsistencies for these three 
coefficients. These include indications that (i) more vari-
ability than what initially existed can be lost ( FVR1 , FVR2 , 
and FYAN ); (ii) variability has decreased when in reality 
it has increased ( FVR1 , FVR2 , and FYAN ); (iii) variability 
has increased when in reality it has decreased ( FVR1 and 
FVR2 ); and (iv) it is not possible to gain more variabil-
ity than  what existed initially ( FYAN ). The expectations 
developed here clearly explain the different patterns of 
these coefficients obtained for a highly inbred pig popu-
lation when using thousands of SNP genotypes.
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FVR2 : dark brown line, and FYAN  : red line) in cohort 6 for each chromo‑
some of the Guadyerbas genome when using SNPs with a MAF higher 
than 0 in cohort 1.
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Abstract: A main objective in conservation programs is to maintain genetic variability. This can be
achieved using the Optimal Contributions (OC) method that optimizes the contributions of candidates
to the next generation by minimizing the global coancestry. However, it has been argued that
maintaining allele frequencies is also important. Different genomic coancestry matrices can be used
on OC and the choice of the matrix will have an impact not only on the genetic variability maintained,
but also on the change in allele frequencies. The objective of this study was to evaluate, through
stochastic simulations, the genetic variability maintained and the trajectory of allele frequencies
when using two different genomic coancestry matrices in OC to minimize the loss of diversity: (i)
the matrix based on deviations of the observed number of alleles shared between two individuals
from the expected numbers under Hardy–Weinberg equilibrium (θLH); and (ii) the matrix based on
VanRaden’s genomic relationship matrix (θVR). The results indicate that the use of θLH resulted in a
higher genetic variability than the use of θVR. However, the use of θVR maintained allele frequencies
closer to those in the base population than the use of θLH.

Keywords: genetic diversity; allele frequencies; genomic coancestry matrix; optimal contributions

1. Introduction

Genetic diversity is a prerequisite for populations to be able to face future environ-
mental changes and to ensure long-term survival [1]. Thus, a common objective in genetic
conservation programs is to minimize the loss of genetic variability. This can be achieved us-
ing the Optimal Contributions (OC) method that optimizes the contributions of candidates
to the next generation by minimizing the global coancestry [2–4]. It has been demonstrated
that OC maximizes genetic diversity measured as expected heterozygosity [5], which is
proportional to the additive genetic variance of quantitative traits [6]. Controlling the loss
of genetic diversity also keeps the inbreeding rate under control and therefore the risk of
inbreeding depression.

A different objective in genetic conservation programs can be to maintain allele
frequencies to preserve the uniqueness of a particular population, since current frequencies
are the result not only of genetic drift, but also of previous selection processes [7–9].
Selection and drift can lead to a given allele responsible for a desirable trait at a high
frequency. Moreover, trying to move the frequency to intermediate values to increase
genetic variability would remove the uniqueness of the population. Thus, changes in the
genetic composition of populations may be undesirable, particularly when dealing with ex
situ conservation programs where the final aim is the reintroduction to the wild [9].
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When the OC method is applied using pedigree information to compute coancestries,
both objectives (maximum heterozygosity and maintenance of allele frequencies) are
achieved [9], but this is not the case when coancestries are computed from molecular
marker data. Previous studies have shown that using a coancestry matrix (θ) computed
from large numbers of single nucleotide polymorphisms (SNPs) in OC is more efficient for
maintaining diversity than using the pedigree-based coancestry matrix [10–12]. However,
given that the highest expected heterozygosity is obtained at intermediate allele frequencies,
a consequence of applying OC using a θ based on SNP genotypes is that the genetic
composition of the population is modified [9–11,13,14].

Different genomic coancestry matrices have been proposed for being used in
OC [10,11,15–17]. They include the matrix that describes deviations of the observed
numbers of alleles shared by two individuals from the expected numbers under Hardy–
Weinberg equilibrium [18], and those obtained from genomic relationship matrices cur-
rently used in genomic predictions [19,20]. In a recent study, Morales-González et al. [16]
have shown that the expected heterozygosity retained through OC was higher when using
the matrix proposed by Li and Horvitz [18] than when using different genomic relation-
ship matrices (i.e., the VanRaden’s matrices based on Method 1 and 2 [19] and the Yang’s
matrix [20]). However, as mentioned above, the genomic θ used in OC will have an impact
not only on the diversity maintained, but also on the trajectory of the change in allele fre-
quencies. Gómez-Romano et al. [21] suggested that while OC using a genomic coancestry
matrix that simply measures the proportion of alleles shared by two individuals [22] and
that correlates perfectly with Li and Horvitz’s matrix favors solutions that tend to move
allele frequencies towards 0.5, OC using VanRaden’s matrices would lead to solutions
that tend to keep allele frequencies closer to those in the original population (i.e., allele
frequencies would tend to be unchanged). This has been recently confirmed by Meuwissen
et al. [17] in the context of OC aimed at maximizing genetic gain through selection while
restricting the increase in inbreeding (i.e., restricting the loss of genetic diversity).

In general, populations under conservation programs are small and genetic drift
leads to a loss of diversity and changes in allele frequencies. The magnitude of these drift
effects depends on the effective population size (Ne) which can be estimated from genomic
coancestry. However, Toro et al. [23] have recently questioned the meaning of Ne when
genomic matrices are used in OC. In particular, when optimal management is carried out
using marker information, genetic diversity can increase in the initial generations implying
negative estimates of Ne. Moreover, in the long term, Ne does not attain an asymptotic
value, but it shows an unpredictable behavior. Their findings were based on OC using
Nejati-Javaremi´s matrix [22] and it is unclear if they hold when other genomic coancestry
matrices are used.

The objective of this study was to evaluate, through computer simulations, the genetic
variability maintained and the trajectory of allele frequencies when different genomic
coancestry matrices are used in OC. Estimates of Ne obtained from the change in heterozy-
gosity computed from different genomic matrices were also compared.

2. Materials and Methods

Scenarios simulated involved the management of populations through the OC method
using two different genomic coancestry matrices, for 50 discrete generations. Management
started from a base population with family structure. The same base population was
used for the 100 replicates run and it was created in two steps. Firstly, a population at
mutation-drift equilibrium was generated. Secondly, the population was expanded in
order to have enough individuals for sampling the 100 replicates (see below, in Section 2.1).
The simulations were carried out with our own Fortran 90 codes.

2.1. Generation of the Base Population

The simulation of the base population was done in two steps to simulate a realistic
amount of linkage disequilibrium and to ensure independency among the replicates. The
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first step was to generate a population in LD using a mutation-drift equilibrium approach.
For this, 10,000 discrete generations of random mating for a population of 100 individuals
(50 males and 50 females) were simulated. Using a larger population size would have
generated an unrealistically low LD. Sires and dams were sampled with replacement and
were mated at random. Each mating produced 2 offspring (1 of each sex). Thus, Ne was
equal to 100. The genome was composed of 20 chromosomes of 1 Morgan each. Two types
of biallelic loci (SNP and unobserved loci) were simulated and they differed simply in their
subsequent use. SNP loci were used for computing the genomic coancestry matrices used in
the management of the population that started after the base population was created. The
unobserved loci were used for measuring diversity and changes of allele frequencies, and
for estimating Ne across generations. Thus, the effect of different management strategies
(i.e., using different genomic coancestry matrices) can be evaluated in the rest of the genome
and not only on the loci used in the management (i.e., it is sometimes done using SNPs). A
total of 500,000 SNPs and 500,000 unobserved loci were simulated per chromosome. At the
initial generation, all loci were fixed. The mutation rate per locus and generation (µ) was
2.5 × 10−6 for all loci. The number of new mutations per generation was sampled from a
Poisson distribution with mean 2Nencµnl„ where nc is the number of chromosomes (i.e.,
20) and nl is the total number of loci per chromosome (i.e., 1,000,000). Mutations were then
randomly distributed across individuals, chromosomes and loci, switching allele 1 to allele
2 and vice versa. When generating the gametes, the number of crossovers per chromosome
was drawn from a Poisson distribution with mean equal to 1. Crossovers were randomly
distributed without interference. At the end of the process, the expected heterozygosity
measured at both types of loci had stabilized (mutation-drift equilibrium). The second step
consisted of expanding this population so we could sample the individuals to be used at
the first generation of each replicate. The population was expanded during 4 generations
with the aim of having enough individuals to sample 100 different replicates. During
the 4 generations of expansion, each individual was randomly allocated to 8 different
mates and each mating produced 1 offspring. In this way, the number of individuals
in the population was multiplied by 4 each generation. After these 4 generations, the
population was composed by 25,600 individuals and constituted the base population
(t = 0). There were a total of 56,017 SNPs and 55,840 unobserved loci still segregating in
t = 0. The expected heterozygosity (He) computed with all loci (SNPs and unobserved loci)
still segregating was 0.1811 and the linkage disequilibrium (measured as r2, the squared
correlation between pairs of loci) between consecutive loci was 0.131.

2.2. Management Strategies

Management was performed on populations of two different sizes (N = 20 and N = 100
individuals, half of each sex) using the OC method across 50 generations. Population size
was kept constant across generations. The founder individuals for each replicate were
randomly sampled from the base population. Note that, given that the set of individuals
sampled in t = 0 differs across replicates, the number of segregating loci can also differ. In
most scenarios (see below, at the end of this section), all loci segregating in t = 0 were used
for managing the population, for measuring diversity and changes of allele frequencies,
and for estimating Ne.

The problem to be solved in the OC method is related to the allocation of contributions,
i.e., the number of offspring each candidate should produce the next generation. The
pursued strategy is to minimize the global coancestry weighted by those contributions, i.e.,
minimize c’θ c, where c is a N × 1 vector of proportions of offspring left by each candidate
(i.e., the vector of solutions), N is the number of candidates and θ is the coancestry matrix.
A restriction was imposed in the optimization such as the sum of the contributions of males
and females is the same and equal to 1

2 , i.e., Q’c = 1
2 1, where Q is a (N × 2) known incidence

matrix indicating the sex of the candidates with 0s and 1s, and 1 is a (2 × 1) vector of
ones. The optimization problem was solved using Lagrangian multipliers [2,24]. Note that
with this approach, c can contain negative values for some candidates. The contribution
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of candidates with ci < 0 was then set to 0 and the optimization was repeated with the
remaining candidates until all elements of c were non-negative. Finally, the contribution
of individual i (ci), which is a proportion, was converted to a number of offspring by
multiplying ci by 2N and rounding to the nearest integer but ensuring that the number of
offspring of each sex equals to N/2. Each parent was randomly allocated to different mates
(among the selected individuals) to produce its offspring.

Two management strategies were investigated, and they differed in the genomic
coancestry matrix used in the optimization of contributions. Under strategy SO_LH, the
coancestry matrix used was matrix θLH which describes the excess in the observed number
of alleles shared by two individuals relative to the expected number under Hardy–Weinberg
equilibrium [18,25]. Specifically, the coancestry coefficient between individuals i and j was
computed as

fLH(i,j) =
∑S

k=1 fOBS(i,j)k − S + 2 ∑S
k=1 pk(1− pk)

2 ∑S
k=1 pk(1− pk)

(1)

where fOBS(i,j) is the proportion of alleles shared by individuals i and j, S is the number
of SNPs and pk is the frequency of the reference allele (allele B) of SNP k in t = 0. Under
strategy SO_VR, the coancestry matrix used was matrix θVR which is based on the genomic
relationship matrix obtained from VanRaden’s method 2 [19]. Specifically, the coancestry
coefficient between individuals i and j was computed as

fVR(i,j) =
1

2S

S

∑
k=1

(xki − 2pk)
(

xkj − 2pk

)
2pk(1− pk)

(2)

where xki is the genotype of individual i for SNP k, coded as 0, 1 or 2 for genotypes AA, AB
and BB, respectively, and pk is as defined for fLH.

In most scenarios, both coancestry matrices were computed every generation using
all SNPs that were segregating in t = 0. However, we analyzed two additional scenarios
where two different minor allele frequency (MAF) thresholds were imposed for the SNPs
to be used to compute the coancestry matrices: (i) using only SNPs with MAF > 0.05; and
(ii) using only SNPs with MAF > 0.25. The first threshold (MAF > 0.05) was considered
because it is commonly applied when analyzing real data to reduce the number of potential
genotyping errors. The second threshold (MAF > 0.25) was considered to explore the
influence of rare alleles on the performance of the coancestry matrices investigated. It
is known that with VanRaden’s method rare alleles contribute more to the coancestry
coefficient than common alleles [21,26]. It is, thus, interesting to determine how the
differences between management strategies SO_LH and SO_VR vary in the different MAF
scenarios. Management in these additional scenarios was performed for 50 generations.

Furthermore, as a benchmark, we simulated a strategy (strategy SE) where the contri-
butions of all candidates were equalized (i.e., all individuals contributed with two offspring
to the next generation). This is the simplest management strategy that has been proposed
to maintain genetic diversity by increasing Ne. It should be noticed that when dealing with
populations in which the relationships between individuals are homogeneous (all equally
related), this strategy leads to a Ne close to 2N.

2.3. Parameters Evaluated

Management strategies were compared in terms of the genetic variability retained
and the trajectory of the allele frequencies across generations for the SNPs and for the
unobserved loci. Moreover, strategies were compared in terms of the number of individuals
selected to produce the next generation (NS) and the number of loci still segregating in a
given generation, both for SNPs and for unobserved loci. The amount of genetic variability
retained was measured as the expected heterozygosity (He) computed as 1−∑L

k=1 ∑2
l=1 p2

kl ,
where L is the number of loci (SNPs or unobserved loci) and plk is the frequency of allele l
of locus k.
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In order to evaluate the ‘distance’ between frequencies in a given generation t and
frequencies in t = 0, we used the Kullback–Leibler (KL) divergence criterion, which mea-
sures how different is a particular distribution from a reference distribution [27], which
here is the distribution of allele frequencies in t = 0. The KL divergence between current
frequencies and frequencies in t = 0 was computed as

KL =
L

∑
k=1

2

∑
l=1

p′kl log
p′kl
pkl

, (3)

where pkl is the frequency of allele l of locus k in t = 0, and p′kl is the corresponding
frequency in the current generation (t > 0). The summation over alleles included only
alleles with p′kl > 0.

Finally, Ne was estimated from the change in heterozygosity in SNP loci. Thus, Ne
in generation t was computed as Ne = 1/2 ∆He, where ∆He equals He(t−1) − He(t)/He(t−1).
All results presented are averages over the 100 replicates.

3. Results
3.1. Expected Heterozygosity and Kullback–Leibler Divergence for Populations of Size N = 100

For populations of size N = 100, and using all the SNPs segregating in t = 0, strategy
SO_LH led to higher genetic variability (measured as He) than strategy SO_VR (Table 1) and
the difference between both strategies increased across generations. In particular, He was
about 1%, 4% and 11% higher with SO_LH than with SO_VR in t = 1, 10 and 50, respectively.
With SO_LH, He even slightly increased in the initial generations while with SO_VR, He
decreased from the start. Moreover, He obtained with strategy SO_VR was very similar to
He obtained with strategy SE. Table 1 also shows that SO_VR maintained allele frequencies
closer to those in the base population than SO_LH given that the KL values for SO_LH were
≥ 100% higher than for SO_VR. The differences in KL between both strategies increased
across generations. Moreover, at later generations, SO_VR was slightly more efficient in
maintaining the initial frequencies than SE, a strategy that is expected to maximize Ne and,
thus, to minimize genetic drift.

Table 1. Expected heterozygosity (He, in %) and Kullback–Leibler divergence for unobserved loci (KL × 102), number
of selected candidates (NS), and number of SNPs (S) and unobserved loci (U) segregating across generations (t) when
contributions are equalized (SE) and when they are optimized using Li and Horvitz (SO_LH) and VanRaden (SO_VR)
coancestry matrices computed with SNPs with MAF > 0.00 in a population of 100 individuals.

SE SO_LH * SO_VR *

t He KL NS S U He KL NS S U He KL NS S U

1 19.17 0.06 100 51,035 50,894 +0.14 +0.14 −39 −2239 −2246 0.00 0.00 0 +8 +18
2 19.12 0.12 100 49,873 49,737 +0.21 +0.23 −36 −3206 −3229 0.00 0.00 0 −22 0
3 19.07 0.18 100 48,852 48,729 +0.28 +0.30 −35 −3792 −3847 0.00 0.00 0 −61 −52
4 19.03 0.24 100 47,946 47,828 +0.35 +0.37 −35 −4182 −4261 0.00 0.00 −1 −113 −101
5 18.98 0.30 100 47,108 47,003 +0.41 +0.43 −33 −4384 −4499 0.00 −0.01 −1 −162 −157

10 18.73 0.57 100 43,777 43,691 +0.68 +0.68 −30 −4731 −4975 0.00 −0.03 −2 −399 −401
15 18.51 0.82 100 41,311 41,217 +0.89 +0.86 −28 −4523 −4855 −0.01 −0.06 −5 −595 −587
20 18.27 1.06 100 39,313 39,229 +1.08 +0.99 −26 −4152 −4567 −0.01 −0.09 −6 −714 −720
30 17.82 1.50 100 36,231 36,140 +1.40 +1.16 −24 −3329 −3896 +0.01 −0.18 −9 −906 −899
40 17.38 1.90 100 33,854 33,759 +1.67 +1.24 −22 −2517 −3215 +0.03 −0.26 −11 −995 −970
50 16.95 2.28 100 31,940 31,848 +1.92 +1.27 −21 −1786 −2594 +0.05 −0.35 −12 −1081 −1036

* SO_LH and SO_VR values are those deviated from SE. Standard errors (computed across replicates) ranged from 4.91 × 10−5 to 9.54 × 10−5

for He and from 0.16 × 10−5 to 7.39 × 10−5 for KL.

The use of both matrices (θLH and θVR) in OC also led to different numbers of
individuals selected as parents of the next generation (NS). In particular, with SO_LH,
between 10% and 30% fewer individuals were selected than with SO_VR (Table 1). In fact,
with the latter, almost all individuals were selected in all generations up to t = 10. The
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difference in NS entailed a difference in the number of loci that remained segregating across
generations that was much higher with SO_VR than with SO_LH (Table 1), particularly in the
initial generations. As for He and for KL, strategies SO_VR and SE led to very similar values
of NS.

Table 2 shows the evolution across generations of the average frequency of the minor
allele in t = 0. This average frequency was practically constant with SE and slightly
decreased with SO_VR. However, with SO_LH, it increased from ~1% in t = 1 to 16–19% in
t = 50. Thus, it is clear that SO_LH leads average frequencies upward (ultimately towards
0.5) and SO_VR tends to maintain them. As expected, these patterns were more evident for
the SNPs than for the unobserved loci.

Table 2. Average frequency of the minor allele in generation 0 (× 102) across generations (t) for SNPs
and unobserved loci when contributions are equalized (SE) and when they are optimized using Li
and Horvitz (SO_LH) and VanRaden (SO_VR) coancestry matrices in a population of 100 individuals.

SNPs Unobserved Loci

t SE SO_LH SO_VR SE SO_LH SO_VR

0 13.45 13.45 13.45 13.39 13.39 13.39
1 13.44 13.68 13.45 13.39 13.60 13.40
2 13.44 13.81 13.45 13.39 13.72 13.40
3 13.44 13.94 13.45 13.38 13.82 13.39
4 13.44 14.06 13.44 13.38 13.93 13.39
5 13.44 14.17 13.44 13.38 14.02 13.39
10 13.44 14.67 13.41 13.38 14.44 13.36
15 13.45 15.08 13.37 13.39 14.77 13.33
20 13.44 15.42 13.32 13.39 15.05 13.29
30 13.44 15.96 13.23 13.39 15.46 13.23
40 13.45 16.36 13.12 13.39 15.75 13.15
50 13.45 16.67 13.01 13.40 15.98 13.07

Figures 1 and 2 show the frequency (f ) distribution also for minor alleles in t = 0
in this generation and after 50 generations of management, using different sets of SNPs
to compute coancestries. When using all SNPs segregating in t = 0, the distributions
for SNPs and unobserved loci were very similar (Figures 1a and 2a). However, when
using only SNPs with MAF > 0.05 or MAF > 0.25, the distribution for SNPs was greatly
affected. When using SNPs with MAF > 0 or MAF > 0.05 (Figure 1a,b), a greater number
of SNPs was fixed with SO_LH than with SO_VR across generations (see class f = 0.00).
However, more loci (SNPs and unobserved loci) with low frequencies (0.00 < f ≤ 0.15) were
observed with SO_VR than with SO_LH and more loci with higher frequencies (f > 0.4) were
observed with SO_LH than with SO_VR. Thus, although more alleles are fixed with SO_LH,
those that are kept segregating increase their frequency, while with SO_VR the frequencies
tend to be maintained. The highest difference between SNPs and unobserved loci was
found when only SNPs with MAF > 0.25 were used to estimate the coancestry matrices
(Figures 1c and 2c). These differences are due to the fact that no MAF filtering was done
for the unobserved loci.
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Figure 1. Number of SNPs for each class of allele frequency of the allele that was minor at generation
0 (gray bars) and the frequency of this allele after 50 generations, when contributions are opti-
mized using Li and Horvitz (SO_LH, in orange) and VanRaden (SO_VR, in green) coancestry matrices
computed with SNPs with MAF > 0.00 (a), MAF > 0.05 (b) and MAF > 0.25 (c) in a population of
100 individuals.
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Figure 2. Number of unobserved loci for each class of allele frequency of the allele that was minor at generation 0 (gray
bars) and the frequency of this allele after 50 generations, when contributions are optimized using Li and Horvitz (SO_LH, in
orange) and VanRaden (SO_VR, in green) coancestry matrices computed with SNPs with MAF > 0.00 (a), MAF > 0.05 (b) and
MAF > 0.25 (c) in a population of 100 individuals.
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Figure 3 shows the trajectories of He and KL across generations for unobserved loci
under strategies SO_LH and SO_VR using the three different sets of SNPs. The heterozygosity
maintained with SO_LH decreased as the MAF criterion chosen for the SNPs used to estimate
coancestries becomes more restrictive given that the number of SNPs used decreased. In
fact, the small increase in He observed in the initial generations when using all SNPs
(MAF> 0.00) was not observed when using only the SNPs with MAF > 0.05 or MAF > 0.25.
In parallel, the KL divergence with SO_LH also decreased when increasing the severity of
the restriction imposed on the SNPs used. However, with SO_VR, the changes observed in
He and KL when using a different set of SNPs were very small.
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contributions are optimized using Li and Horvitz (SO_LH) and VanRaden (SO_VR) coancestry matrices computed with SNPs
with MAF > 0.00, MAF > 0.05 and MAF > 0.25 in a population of 100 individuals.
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3.2. Expected Heterozygosity and Kullback–Leibler Divergence for Populations of Size N = 20

Table 3 shows results from the different strategies (SE, SO_LH and SO_VR) for popu-
lations of size N = 20, when all SNPs segregating in t = 0 were used in the management.
Similar to the results found for populations of N = 100, (i) SO_LH led to higher He than
SO_VR and SE; and (ii) SO_VR maintained allele frequencies closer to those in t = 0 than
SO_LH. However, differences among strategies were smaller for populations of N = 20. For
instance, for N = 20, He in t = 10 was less than 1% higher when managing with SO_LH than
when managing with SO_VR, while for N = 100 this percentage was about 4%. For KL, the
highest difference between strategies was 0.0027 units with N = 20 and 0.0127 units with
N = 100. However, with N = 20, contrary to what happened with N = 100, SO_LH managed
to keep frequencies closer to the initial frequencies than SE in the last generations (t ≥ 30).

Table 3. Expected heterozygosity (He, in %) and Kullback–Leibler divergence for unobserved loci (KL × 102), number
of selected candidates (NS), and number of SNPs (S) and unobserved loci (U) segregating across generations (t) when
contributions are equalized (SE) and when they are optimized using Li and Horvitz (SO_LH) and VanRaden (SO_VR)
coancestry matrices computed with SNPs with MAF > 0.00 in a population of 20 individuals.

SE SO_LH * SO_VR *

t He KL NS S U He KL NS S U He KL NS S U

1 23.35 0.27 20 38,995 38,955 +0.04 +0.05 −1 −193 −233 +0.03 0.00 0 +31 +134
2 23.06 0.52 20 37,093 37,050 +0.06 +0.07 −1 −275 −335 +0.01 0.00 0 +52 +155
3 22.76 0.76 20 35,522 35,472 +0.10 +0.09 −1 −356 −410 −0.02 +0.01 0 −12 +104
4 22.48 0.99 20 34,166 34,119 +0.07 +0.11 −1 −390 −442 −0.02 −0.01 0 −16 +94
5 22.19 1.20 20 33,016 32,978 +0.08 +0.13 −1 −456 −528 −0.03 0.00 0 −69 +37

10 20.79 2.17 20 28,782 28,692 +0.17 +0.18 −1 −533 −563 −0.07 −0.03 −1 −269 −62
15 19.52 3.00 20 25,844 25,763 +0.24 +0.17 −1 −497 −563 −0.03 −0.07 −1 −400 −206
20 18.33 3.75 20 23,512 23,434 +0.37 +0.13 −1 −336 −424 −0.01 −0.12 −1 −429 −247
30 16.02 5.13 20 19,854 19,795 +0.79 −0.02 −2 +81 −59 +0.04 −0.25 −2 −469 −337
40 14.03 6.26 20 17,044 17,002 +1.15 −0.16 −1 +545 +377 +0.18 −0.43 −2 −432 −309
50 12.32 7.23 20 14,853 14,811 +1.39 −0.27 −1 +787 +592 +0.19 −0.52 −2 −433 −322

* SO_LH and SO_VR values are those deviated from SE. Standard errors (computed across replicates) ranged from 1.15 × 10−4 to 3.37 × 10−4

for He and from 10 × 10−4 to 1.72 × 10−4 for KL.

In populations of size N = 20, individuals are more closely related than in populations
of size N = 100 and the genetic variability is smaller. Thus, most (if not all) individuals were
selected to be parents of the next generation with all management strategies across genera-
tions. It should be noted that the number of loci segregating in t = 0, when management
started, was substantially smaller when simulating populations of size N = 20. In order to
investigate if the differences observed between N = 20 and N = 100 are a consequence of
the different number of loci segregating in t = 0, a scenario with N = 100 starting with the
same number of SNPs as in the scenario with N = 20 (about 40,000 SNPs) was simulated.
The results indicate that the differences between scenarios with different N were due to the
population size and not to the different number of loci (results not shown).

3.3. Effective Population Size

Table 4 shows estimates of Ne across generations for the different scenarios simulated.
For N = 100, estimates of Ne were around 200 individuals under strategies SE and SO_VR.
This is the expected value for Ne when contributions are equalized since Ne is approximately
equal to 2N. However, under strategy SO_LH, estimates of Ne were unreasonable as they
took negative values in the initial generations. In later generations, Ne became positive
but did not reach a stable value. For N = 20, estimates under strategies SE and SO_VR were
around 40 individuals, as expected. Estimates of Ne under strategy SO_LH were between
6% and 50% higher than under strategy SE.
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Table 4. Effective population size (Ne) across generations (t) when contributions are equalized
(SE) and when they are optimized using Li and Horvitz (SO_LH) and VanRaden (SO_VR) coancestry
matrices in populations of different sizes (N).

N = 100 N = 20

t SE SO_LH SO_VR SE SO_LH SO_VR

1 188.21 −111.90 195.55 36.92 42.27 40.40
5 199.07 −855.78 197.46 36.78 41.24 34.31

10 191.56 −5777.32 193.05 38.54 40.81 41.77
15 203.50 1855.71 194.54 36.65 45.41 43.18
20 202.62 1033.03 201.52 40.61 47.25 40.02
25 190.44 636.00 209.85 40.20 47.08 42.02
30 193.58 670.07 209.79 36.45 53.03 38.57
35 193.30 524.97 206.03 33.41 50.28 44.62
40 204.95 601.67 212.53 36.94 47.91 49.68
45 207.44 703.31 205.00 37.52 48.50 40.09
50 206.86 481.08 213.02 41.99 46.20 38.53

4. Discussion

Using computer simulations, this study has compared two different management
strategies in terms of two important criteria in genetic conservation programs, i.e., genetic
diversity (He) maintained and changes in allele frequencies. Both strategies optimize
contributions for maintaining diversity but differ in the genomic coancestry matrix used
in the optimization (θLH in strategy SO_LH and θVR in strategy SO_VR). Moreover, as a
benchmark, the simplest management strategy proposed to maintain genetic diversity that
implies equalizing the contributions of all candidates (strategy SE) was evaluated.

The changes in allele frequencies were evaluated using the KL divergence criterion.
The greater the value of KL, the greater the divergence of frequencies with respect to
the frequencies in the base population. When the strategies were compared using the KL
criterion, it was clear that strategy SO_LH gives higher values than strategy SO_VR, indicating
that the latter is able to maintain allele frequencies closer to the original frequencies (lower
KL values). On the other hand, with strategy SO_LH, the population evolves differently as it
pushes frequencies towards 0.5 and thus changes the genetic composition of the population
more than strategy SO_VR.

Pushing frequencies towards 0.5 as strategy SO_LH does leads to higher genetic vari-
ability when measured as expected heterozygosity. Thus, the hypothesis raised by Gómez-
Romano et al. [21] that using matrix θLH in OC designed for maintaining genetic diversity
better achieves the objective (i.e., higher He) than using matrix θVR, but using the latter
maintains allele frequencies closer to the initial frequencies, is confirmed. This was ob-
served both in populations with N = 20 and in populations with N = 100 although the
differences between both strategies were smaller with N = 20. This is because individuals
in the smaller populations are more closely related and there are less options to choose
among individuals and strategies behave more similarly.

Saura et al. [9] showed that the use of the pedigree-based coancestry matrix in OC
maintained allele frequencies close to those of the initial population. This is related to the
high levels of Ne obtained when minimizing pedigree coancestry (close to 2N), leading
to reduced drift and little departures to the original frequencies. Additionally, several
studies [10,12] have shown that OC based on pedigrees leads to less maintained genetic
diversity than the use of genomic coefficients based on Nejati-Javaremi´s matrix [22]. This
is due to the fact that genomic data provide realized estimates of coancestry, while pedigree
data provide expected values. Therefore, results under the management of populations
with OC using the pedigree-based coancestry matrix would be similar to those under SO_VR.

Strategy SO_VR was only slightly more efficient for maintaining frequencies than strat-
egy SE. This strategy tends to reduce the change in allele frequencies, which implies a
reduced genetic drift [17]. The magnitude of drift is minimized when Ne equals approx-
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imately 2N, and it is well known that, when managing the population using pedigree
information (as said before), this is achieved by equalizing contributions [6,28]. The small
advantage of SO_VR in terms of maintaining frequencies over SE arises from the fact that
the former uses realized relationships and detects real differences between individuals
while SE assumes homogeneous relationships. Contrarily, SO_LH does not minimize drift
but maximizes He by shifting frequencies towards 0.5. Thus, results from SO_LH are quite
different to those obtained under SE in terms of the number of selected candidates and
their optimal contributions.

Given that strategy SO_LH brings the frequencies towards 0.5, He increased in the initial
generations and this led to negative estimates of Ne in the largest population (N = 100).
As generations go by, Ne becomes positive but with unrealistic very high values without
attaining an asymptotic value. This was also observed by Toro et al. [23] who questioned
the meaning of Ne when genomic coancestry matrices are used in OC. They showed
an unpredictable behavior for Ne when using the similarity genomic matrix of Nejati-
Javaremi et al. [22], which has a correlation of 1 with the θLH matrix used here [5,16,29].
However, our results show that when using θVR in OC, estimates of Ne were close to the
expected value when equalizing contributions (approximately 2N). As has been discussed
above, the results from strategy SO_VR were very similar to those from strategy SE given
that both tend to minimize drift. For the smallest population considered (N = 20), estimates
of Ne were close to 2N not only with SO_VR but also with SO_LH. In such a small population,
there are fewer options to choose among individuals and most of them are selected to
contribute (Table 3). Thus, the three strategies investigated led to similar results.

Strategy SO_LH led to higher He but also to a higher loss of segregating loci than
strategy SO_VR. In the largest population (N = 100), the percentage of alleles lost for
unobserved loci at t = 1 was 13% and 9% with SO_LH and SO_VR, respectively (Table 1). The
difference in both management strategies in terms of the number of alleles lost could be due
to a different number of individuals selected to contribute to the next generation that was
lower with SO_LH. It must be emphasized that the mean coancestry of each individual with
all the candidates (including the individual), i.e., the marginal of the coancestry matrix,
is a useful concept for understanding the different numbers selected with both strategies.
This is because the marginal of the coancestry matrix is a measure of the ‘relevance’ of
each individual, in terms of the degree of genetic information shared with the rest, and
the optimal solutions will depend on all relationships between candidates. Its value is the
same for all candidates when considering θVR. Then, all candidates are equally useful
and should be selected as it was observed minimizing the global coancestry through OC
using θVR (strategy SO_VR). However, when considering θLH, the average coancestry of
individuals AA (homozygous for the minor allele) is lower than that of individuals BB
(homozygous for the major allele), since individuals AA harbor genetic information that is
underrepresented (i.e., they carry the rarer allele) and should be favored for selection and
contributions. Therefore, OC using θLH minimize the objective function when selecting
the same number of AA and BB candidates. This leads to an increase in the frequency of
allele A (actually to 0.5 in a single generation in this example with only one locus) while
frequencies stay unchanged when using θVR.

Fernández et al. [13] claimed that OC management using coancestry matrices based
on allele sharing moves frequencies to intermediate values and reduces the probability of
losing alleles. In fact, these authors observed that strategies that maximize heterozygosity,
by managing contributions from parents, keep levels of allelic diversity as high as strategies
that maximize allelic diversity itself. Their results were obtained when applying OC
using the similarity genomic matrix of Nejati-Javaremi et al. [22], calculated with up
to 40 multiallelic markers, but the same could be expected when using θLH given that
correlation between both matrices is 1. However, we have obtained solutions which
maintain genetic diversity (He) but result in a higher number of fixed loci and this could be
due to the different numbers of markers used in both studies.
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To understand these contrasting results, we carried out extra simulations to compare
observed with expected values for the number of fixed loci under both management strate-
gies (i.e., SO_LH and SO_VR). In this extra scenario, a population with N = 20 individuals
was managed during four generations, with different numbers of SNPs used for the cal-
culation of the coancestry matrices (20 and 1000). A single chromosome was simulated.
The expected number of fixed SNPs (ESf) was estimated using the solutions that came
out of each optimization before generating the offspring, following Fernández et al. [13].

Thus, ESf was computed as
2
∑

k=1

N
∏
i=1

probki, where probki is the probability of individual i not

transmitting allele k. If parent i carries a unique type of allele (that is, homozygous for the
h allele) and leaves descendants, probki is 0 if k = h and 1 if k 6= h. If it carries two different
alleles (that is, heterozygous), the probability is probki = (0.5)ci , where ci is the number of
offspring to be contributed by parent i. ESf value can be averaged then across loci. Table 5
shows that expected and observed numbers of SNPs becoming fixed each generation were
close. When using only 20 SNPs, even though only seven–eight individuals are selected
with SO_LH, the expected (observed) number of SNPs that become fixed is lower than with
SO_VR. However, when the number of SNPs used was increased, the trend reversed and the
expected (and observed) number of fixed SNPs becomes lower for SO_VR than for SO_LH,
even when the number of selected individuals increases for SO_LH. The explanation for
this performance could be that, with many markers, SO_LH is able to find a solution with
higher mean He by keeping loci with high MAF and allowing SNPs with rare alleles to
become fixed.

Table 5. Number of selected candidates (NS) and expected (ESf) and observed number of fixed SNPs
(Sf) across generations (t) when contributions are optimized using Li and Horvitz’s (SO_LH) and
VanRaden’s (SO_VR) coancestry matrices computed with two different number of SNPs (S), for a
population of 20 individuals.

SO_LH SO_VR

t S NS ESf Sf NS ESf Sf

1 20 7 0.3 0 20 0.3 0
2 7 0.7 0 13 0.8 1
3 8 0.8 0 13 1.4 1
4 8 0.9 0 12 1.7 1

1 1000 15 21.7 21 20 17.6 18
2 16 38.9 37 19 34.6 33
3 15 54.6 52 19 50.9 47
4 15 68.6 64 18 66.3 60

The results show that the differences in maintained diversity (He) and divergence
from the original frequencies (KL) between strategies SO_LH and SO_VR decreased when
using only SNPs with a minimum MAF (MAF > 0.05 or MAF > 0.25) for computing the
coancestry matrices. As mentioned above, SO_LH promotes the contribution of individuals
carrying rare alleles, as their coancestries with the rest of the population are smaller, and
thus increases the frequencies of rare alleles. When the minimum MAF permitted increases,
the number of rare alleles decreases, and the differences between the average coancestries
between pairs of individuals decrease. In such situation, SO_LH does not prioritize too much
the contributions from any individual and leads to solutions that imply a higher number of
candidates selected. Consequently, the results are closer to those obtained with strategy
SO_VR. Moreover, when using only SNPs with high MAF in t = 0 (i.e., initial frequencies
are close to 0.5), the performance of SO_VR (i.e., keeping those initial frequencies) is similar
to the performance of SO_LH (moving them to intermediate values). These observations are
in agreement with results from Morales-González et al. [16] and Villanueva et al. [29], who
found that the correlation between VanRaden’s and Li and Horvitz’s coefficients increases
with increasing the MAF of the SNPs used.
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Here, we have optimized contributions of parents for minimizing the loss of variability
and then changes in frequencies have been evaluated. On the other hand, Saura et al. [9]
optimized contributions of parents for minimizing changes in allele frequencies and then
the loss of genetic variability was evaluated. An alternative to both approaches could
be to consider simultaneously the control of variability and the allele frequency changes.
Similar to the OC algorithm designed for maximizing genetic gain while restricting the
rate of inbreeding [2,3,24] or for maximizing the phenotypic level for a trait of interest
while restricting the loss in variability when creating base populations [30], one could
develop an algorithm for minimizing the loss of variability while restricting the change
in frequencies or, alternatively, for minimizing frequency changes while restricting the
loss of variability. The specific objective would depend on the particular interest of the
managers of the program. This kind of approach was followed by Fernández et al. [31] in
the context of optimizing the sampling strategy for establishing a gene bank. In particular,
they developed an algorithm that simultaneously allows targeting frequencies for alleles at
a particular locus while controlling the genetic diversity of other unlinked loci.

It could be also possible to combine both coancestry matrices (θLH and θVR) in the
objective function when the specific objective differs across genomic regions (i.e., in some
regions the interest may be to maintain diversity, and in other regions the interest may be
to maintain frequencies). Maintaining diversity may be of interest for regions associated
with inbreeding depression for fitness-related traits and also for regions that harbor loci
involved in general resistance to diseases (e.g., the major histocompatibility complex, MHC)
as a high level of genetic diversity is desirable to ensure that the population can deal with
potential new disease challenges [21]. Maintaining frequencies may be of interest in regions
containing loci that have been under natural or artificial selection, and one wants to keep
the genetic progress obtained. Gómez-Romano et al. [21] showed that the OC method
using a matrix equivalent to θLH is efficient in maintaining He in specific regions and
simultaneously restricts the loss of He in the rest of the genome. Their approach could
be extended to include the use of θVR for minimizing the change in allele frequencies in
some genomic regions. However, it has to be kept in mind that the higher the number
of different parameters to be controlled, or the more regions to be treated differently, the
lower the control of each objective one can expect.

In a conservation program, the maintenance of genetic variability throughout the
genome is the general aim because usually there is no information available on the relevance
of each genome region and the current or future use of the genetic variability present in
particular regions. Therefore, it is better to conserve as much diversity as possible because
if alleles are lost in a population, they will be no longer available. However, this strategy
can lead to the maintenance or even an increase in the frequency of deleterious alleles.
Different methods have been proposed to avoid this when using the OC method, including
(i) selection of the best sib from the group of offspring generated by the selected parents [28]
and (ii) combining selection with inbred matings [14] to allow for some kind of purging.
Sonesson et al. [32] also proposed a model in which they tried to eliminate a disease
from a population in different scenarios by explicitly performing selection against this
condition. Currently, genomics can provide information on deleterious variability and the
loci determining the occurrence of the disease [33], so a strategy where selection is made
against these deleterious alleles [17], while you restrict the loss of variability in the rest of
the genome, could be possible.

The amount of genetic variability retained was measured as the expected heterozy-
gosity (He). However, other measures such as allelic diversity can be used [13,34]. Allelic
diversity is essential from an evolutionary perspective, since the limit of selection response
is determined by the initial number of alleles [35,36]. It is worth noting that strategy SO_VR
would be more efficient than strategy SO_LH, not only to maintain allele frequency but also
to maintain diversity when this is measured as the number of unobserved loci segregating.
It is thus clear that the coancestry matrix to be used in OC when managing a particular
genetic conservation program would be case specific.
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Finally, it is worth mentioning that further work is needed to explore how the re-
laxation of some of the assumptions implicit in our simulations could affect the results
obtained. Extra work would be necessary to investigate schemes with overlapping genera-
tions, variable population size over the management time frame, and different degrees of
relatedness between the founders.

5. Conclusions

When applying strategy SO_LH, more He is maintained than when applying strategy
SO_VR given that SO_LH moves allele frequencies towards 0.5. However, SO_VR maintained
allele frequencies closer to those of the initial generation and more loci segregating than
SO_LH. Therefore, considering that conservation programs generally aim to increase genetic
diversity, but it is also important to maintain population uniqueness, the choice of which
genomic coancestry matrix is used in management may depend on which of these two
goals is more important for each particular case. When a subset of SNPs with MAF > 0.05 or
MAF > 0.25 is used to estimate coancestry matrices, the differences between both strategies
in terms of both He and KL were reduced. The differences between strategies were smaller
for populations of smaller sizes given that in a smaller population it is more difficult to
differentiate between individuals.
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